Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The NLRP3 inflammasome: molecular activation and regulation to therapeutics

Abstract

NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical bases of NLRP3 activation and regulation and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NLRP3 inflammasome priming and activation.
Fig. 2: Post-transcriptional modifications of NLRP3.

Similar content being viewed by others

References

  1. Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29, 301–305 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Aganna, E. et al. Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum. 46, 2445–2452 (2002).

    CAS  PubMed  Google Scholar 

  3. Aksentijevich, I. et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 46, 3340–3348 (2002). References 1–3 report that NLRP3 gain-of-function mutations promote human autoinflammatory diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mangan, M. S. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov. 17, 588 (2018).

    CAS  PubMed  Google Scholar 

  5. Guo, H., Callaway, J. B. & Ting, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002). This is the first report describing an inflammasome complex that mediates cleavage of IL-1β.

    CAS  PubMed  Google Scholar 

  7. Agostini, L. et al. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004). This is the first report showing that NLRP3 assembles an inflammasome complex that mediates cleavage of IL-1β by caspase 1.

    CAS  PubMed  Google Scholar 

  8. Duncan, J. A. et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl Acad. Sci. USA 104, 8041–8046 (2007). This study shows that ATP binding is essential for NLRP3 function, suggesting a therapeutic target for treating NLRP3-related diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cai, X. et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156, 1207–1222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014). References 9 and 10 show that the PYDs from inflammasome sensors nucleate the polymerization of ASC.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmidt, F. I. et al. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J. Exp. Med. 213, 771–790 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Boucher, D. et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215, 827–840 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmid-Burgk, J. L. et al. A genome-wide CRISPR screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J. Biol. Chem. 291, 103–109 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. He, Y., Zeng, M. Y., Yang, D., Motro, B. & Núñez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, H. et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17, 250–258 (2016). References 13–15 identify NEK7 as an integral component of the NLRP3 inflammasome.

    CAS  PubMed  Google Scholar 

  16. Bauernfeind, F. G. et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    CAS  PubMed  Google Scholar 

  17. Franchi, L., Eigenbrod, T. & Núñez, G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183, 792–796 (2009).

    CAS  PubMed  Google Scholar 

  18. Xing, Y. et al. Cutting edge: TRAF6 mediates TLR/IL-1R signaling-induced nontranscriptional priming of the NLRP3 inflammasome. J. Immunol. 199, 1561–1566 (2017).

    CAS  PubMed  Google Scholar 

  19. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Perregaux, D. & Gabel, C. A. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem. 269, 15195–15203 (1994).

    CAS  PubMed  Google Scholar 

  21. Walev, I., Reske, K., Palmer, M., Valeva, A. & Bhakdi, S. Potassium-inhibited processing of IL-1 beta in human monocytes. EMBO J. 14, 1607–1614 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996).

    CAS  PubMed  Google Scholar 

  23. Samways, D. S., Li, Z. & Egan, T. M. Principles and properties of ion flow in P2X receptors. Front. Cell Neurosci. 8, 6 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Di, A. et al. The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity 49, 56–65 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Triantafilou, K., Hughes, T. R., Triantafilou, M. & Morgan, B. P. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J. Cell Sci. 126, 2903–2913 (2013).

    CAS  PubMed  Google Scholar 

  26. Laudisi, F. et al. Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1β release. J. Immunol. 191, 1006–1010 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Asgari, E. et al. C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 122, 3473–3481 (2013).

    CAS  PubMed  Google Scholar 

  28. Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Pétrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    PubMed  Google Scholar 

  30. Gaidt, M. M. et al. Human monocytes engage an alternative inflammasome pathway. Immunity 44, 833–846 (2016).

    CAS  PubMed  Google Scholar 

  31. Groß, C. J. et al. K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45, 761–773 (2016).

    PubMed  Google Scholar 

  32. Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Murakami, T. et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl Acad. Sci. USA 109, 11282–11287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, G. S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yaron, J. R. et al. K+ regulates Ca2+ to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis. 6, e1954 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Katsnelson, M. A., Rucker, L. G., Russo, H. M. & Dubyak, G. R. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J. Immunol. 194, 3937–3952 (2015).

    CAS  PubMed  Google Scholar 

  37. Domingo-Fernández, R., Coll, R. C., Kearney, J., Breit, S. & O’Neill, L. A. J. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J. Biol. Chem. 292, 12077–12087 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Tang, T. et al. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat. Commun. 8, 202 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Green, J. P. et al. Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proc. Natl Acad. Sci. USA 115, E9371–E9380 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Orlowski, G. M. et al. Multiple cathepsins promote pro-IL-1β synthesis and NLRP3-mediated IL-1β activation. J. Immunol. 195, 1685–1697 (2015).

    CAS  PubMed  Google Scholar 

  42. Katsnelson, M. A., Lozada-Soto, K. M., Russo, H. M., Miller, B. A. & Dubyak, G. R. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx. Am. J. Physiol. Cell Physiol. 311, C83–C100 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    CAS  PubMed  Google Scholar 

  44. Cruz, C. M. et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem. 282, 2871–2879 (2007).

    CAS  PubMed  Google Scholar 

  45. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Courbet, A. et al. Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: Characterization of molecular microtubule inhibiting mechanisms in correlation with cytotoxicity. PLOS ONE 12, e0182022 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    CAS  PubMed  Google Scholar 

  48. Bauernfeind, F. et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J. Immunol. 187, 613–617 (2011).

    CAS  PubMed  Google Scholar 

  49. Liu, X. et al. Nuclear factor E2-related factor-2 negatively regulates NLRP3 inflammasome activity by inhibiting reactive oxygen species-induced NLRP3 priming. Antioxid. Redox Signal. 26, 28–43 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, W. et al. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem. Pharmacol. 76, 1485–1489 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sussan, T. E. et al. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice. PLOS ONE 3, e3791 (2008).

    PubMed  PubMed Central  Google Scholar 

  52. Freigang, S. et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur. J. Immunol. 41, 2040–2051 (2011).

    CAS  PubMed  Google Scholar 

  53. Zhao, C., Gillette, D. D., Li, X., Zhang, Z. & Wen, H. Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J. Biol. Chem. 289, 17020–17029 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sogawa, Y. et al. Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice. Sci. Rep. 7, 8801 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lemasters, J. J., Theruvath, T. P., Zhong, Z. & Nieminen, A. L. Mitochondrial calcium and the permeability transition in cell death. Biochim. Biophys. Acta 1787, 1395–1401 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Man, S. M. et al. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat. Immunol. 16, 467–475 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuriakose, T., Zheng, M., Neale, G. & Kanneganti, T. D. IRF1 is a transcriptional regulator of ZBP1 promoting NLRP3 inflammasome activation and cell death during influenza virus infection. J. Immunol. 200, 1489–1495 (2018).

    CAS  PubMed  Google Scholar 

  61. Allam, R. et al. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep. 15, 982–990 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Subramanian, N., Natarajan, K., Clatworthy, M. R., Wang, Z. & Germain, R. N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153, 348–361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dudek, J. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 5, 90 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Elliott, E. I. et al. Cutting edge: mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming. J. Immunol. 200, 3047–3052 (2018).

    CAS  PubMed  Google Scholar 

  66. Franchi, L. et al. Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J. Immunol. 193, 4214–4222 (2014).

    CAS  PubMed  Google Scholar 

  67. Park, S. et al. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J. Immunol. 191, 4358–4366 (2013).

    CAS  PubMed  Google Scholar 

  68. Ichinohe, T., Yamazaki, T., Koshiba, T. & Yanagi, Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl Acad. Sci. USA 110, 17963–17968 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sanman, L. E. et al. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife 5, e13663 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Moon, J. S. et al. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J. Clin. Invest. 125, 665–680 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Moon, J. S. et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat. Med. 22, 1002–1012 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, X. N. et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes 58, 2246–2257 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015). This study shows that an endogenous molecule produced during fasting potently inhibits NLRP3 activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Truax, A. D. et al. The inhibitory innate immune sensor NLRP12 maintains a threshold against obesity by regulating gut microbiota homeostasis. Cell Host Microbe 24, 364–378 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hughes, M. M. & O’Neill, L. A. J. Metabolic regulation of NLRP3. Immunol. Rev. 281, 88–98 (2018).

    CAS  PubMed  Google Scholar 

  78. Chen, J. & Chen, Z. J. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564, 71–76 (2018). This study shows that disassembly of the trans -Golgi network serves as a scaffold for NLRP3 aggregation and activation.

    CAS  PubMed  Google Scholar 

  79. Guo, C. et al. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity 49, 842–856 (2018).

    CAS  PubMed  Google Scholar 

  80. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660 (2015).

    CAS  PubMed  Google Scholar 

  81. He, W.-t et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25, 1285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111 (2016).

    CAS  PubMed  Google Scholar 

  83. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 (2018).

    CAS  PubMed  Google Scholar 

  85. Monteleone, M. et al. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep. 24, 1425–1433 (2018).

    CAS  PubMed  Google Scholar 

  86. Groß, O. et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

    PubMed  Google Scholar 

  87. Antonopoulos, C. et al. Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling. J. Biol. Chem. 290, 20167–20184 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Antonopoulos, C., El Sanadi, C., Kaiser, W. J., Mocarski, E. S. & Dubyak, G. R. Proapoptotic chemotherapeutic drugs induce noncanonical processing and release of IL-1β via caspase-8 in dendritic cells. J. Immunol. 191, 4789–4803 (2013).

    CAS  PubMed  Google Scholar 

  89. Bossaller, L. et al. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189, 5508–5512 (2012).

    CAS  PubMed  Google Scholar 

  90. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011). This study identifies non-canonical NLRP3 activation via LPS-mediated caspase 11 activation and shows it is an important immune mediator during sepsis.

    CAS  PubMed  Google Scholar 

  91. Aachoui, Y. et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339, 975–978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    CAS  PubMed  Google Scholar 

  93. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014). This study shows that caspases 4, 5 and 11 are intracellular receptors for LPS, activation of which induces non-canonical inflammasome activation.

    CAS  PubMed  Google Scholar 

  94. Napier, B. A. et al. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity. J. Exp. Med. 213, 2365–2382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Man, S. M. et al. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes. Cell 167, 382–396 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Meunier, E. et al. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509, 366 (2014).

    CAS  PubMed  Google Scholar 

  97. Lee, B. L. et al. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J. Exp. Med. 215, 2279–2288 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015). Together with references 80 and 81 , this paper shows that cleavage of GSDMD by caspase 1, 4, 5 or 11 during inflammasome activation causes pyroptosis.

    CAS  PubMed  Google Scholar 

  99. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kerur, N. et al. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat. Med. 24, 50–61 (2018).

    CAS  PubMed  Google Scholar 

  101. Chu, L. H. et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat. Commun. 9, 996 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar6676 (2018).

    PubMed  Google Scholar 

  103. Kahlenberg, J. M., Carmona-Rivera, C., Smith, C. K. & Kaplan, M. J. Neutrophil extracellular trap–associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 190, 1217–1226 (2012).

    PubMed  Google Scholar 

  104. Netea, M. G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Piccini, A. et al. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc. Natl Acad. Sci. USA 105, 8067–8072 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. He, Y., Franchi, L. & Núñez, G. TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J. Immunol. 190, 334–339 (2013).

    CAS  PubMed  Google Scholar 

  107. Lin, K.-M. et al. IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc. Natl Acad. Sci. USA 111, 775–780 (2014).

    CAS  PubMed  Google Scholar 

  108. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kalantari, P. et al. Dual engagement of the NLRP3 and AIM2 inflammasomes by plasmodium-derived hemozoin and DNA during malaria. Cell Rep. 6, 196–210 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Karki, R. et al. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 17, 357–368 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Freeman, L. et al. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J. Exp. Med. 214, 1351–1370 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Swanson, K. V. et al. A noncanonical function of cGAMP in inflammasome priming and activation. J. Exp. Med. 214, 3611–3626 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Man, S. M. et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc. Natl Acad. Sci. USA 111, 7403–7408 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, J., Qian, C. & Cao, X. Post-translational modification control of innate immunity. Immunity 45, 15–30 (2016).

    PubMed  Google Scholar 

  117. Juliana, C. et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 287, 36617–36622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Han, S. et al. Lipopolysaccharide primes the NALP3 inflammasome by inhibiting its ubiquitination and degradation mediated by the SCFFBXL2 E3 ligase. J. Biol. Chem. 290, 18124–18133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Song, H. et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat. Commun. 7, 13727 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yan, Y. et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62–73 (2015).

    CAS  PubMed  Google Scholar 

  121. Py, B. F., Kim, M.-S., Vakifahmetoglu-Norberg, H. & Yuan, J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol. Cell 49, 331–338 (2013).

    CAS  PubMed  Google Scholar 

  122. Rodgers, M. A. et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J. Exp. Med. 211, 1333–1347 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Song, N. et al. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol. Cell 68, 185–197 (2017).

    CAS  PubMed  Google Scholar 

  124. Zhang, Z. et al. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J. Exp. Med. 214, 2671–2693 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Stutz, A. et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J. Exp. Med. 214, 1725–1736 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Spalinger, M. R. et al. NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J. Clin. Invest. 126, 1783–1800 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Mortimer, L., Moreau, F., MacDonald, J. A. & Chadee, K. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat. Immunol. 17, 1176 (2016).

    CAS  PubMed  Google Scholar 

  128. Guo, C. et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45, 802–816 (2016).

    CAS  PubMed  Google Scholar 

  129. Barry, R. et al. SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nat. Commun. 9, 3001 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Indramohan, M., Stehlik, C. & Dorfleutner, A. COPs and POPs patrol inflammasome activation. J. Mol. Biol. 430, 153–173 (2018).

    CAS  PubMed  Google Scholar 

  131. Bedoya, F., Sandler, L. L. & Harton, J. A. Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions. J. Immunol. 178, 3837–3845 (2007).

    CAS  PubMed  Google Scholar 

  132. Ratsimandresy, R. A. et al. The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation. Nat. Commun. 8, 15556 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Periasamy, S. et al. Pyrin-only protein 2 limits inflammation but improves protection against bacteria. Nat. Commun. 8, 15564 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. de Almeida, L. et al. The PYRIN domain-only protein POP1 inhibits inflammasome assembly and ameliorates inflammatory disease. Immunity 43, 264–276 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Dinarello, C. A., Simon, A. & Van Der Meer, J. W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ozaki, E., Campbell, M. & Doyle, S. L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J. Inflamm. Res. 8, 15 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Brydges, S. D. et al. Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 30, 875–887 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Laliberte, R. E. et al. Glutathione S-transferase omega 1–1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1β posttranslational processing. J. Biol. Chem. 278, 16567–16578 (2003).

    CAS  PubMed  Google Scholar 

  139. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015). This study shows that the small molecule MCC950 specifically inhibits NLRP3 inflammasome activation and is effective in NLRP3-activated mouse disease models.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Dempsey, C. et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun. 61, 306–316 (2017).

    CAS  PubMed  Google Scholar 

  141. Ismael, S., Nasoohi, S. & Ishrat, T. MCC950, the selective NLRP3 inflammasome inhibitor protects mice against traumatic brain injury. J. Neurotrauma 35, 1294–1303 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. van der Heijden, T. et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E–deficient mice — brief report. Arterioscler. Thromb. Vasc. Biol. 37, 1457–1461 (2017).

    PubMed  Google Scholar 

  143. Monnerat, G. et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat. Commun. 7, 13344 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Van Hout, G. P. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J. 38, 828–836 (2016).

    Google Scholar 

  145. Zhai, Y. et al. Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice. Molecules 23, 522 (2018).

    PubMed Central  Google Scholar 

  146. Mridha, A. R. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037–1046 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Perera, A. P. et al. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci. Rep. 8, 8618 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Cocco, M. et al. Development of an acrylate derivative targeting the NLRP3 inflammasome for the treatment of inflammatory bowel disease. J. Med. Chem. 60, 3656–3671 (2017).

    CAS  PubMed  Google Scholar 

  150. Darakhshan, S. & Pour, A. B. Tranilast: a review of its therapeutic applications. Pharmacol. Res. 91, 15–28 (2015).

    CAS  PubMed  Google Scholar 

  151. Huang, Y. et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol. Med. 10, e8689 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. Ma, Z., Hu, C. & Zhang, Y. Therapeutic effect of Rabdosia rubescens aqueous extract on chronic pharyngitis and its safety [Chinese]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 36, 170–173 (2011).

    CAS  PubMed  Google Scholar 

  153. He, H. et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 9, 2550 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. Baldwin, A. G. et al. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol. 24, 1321–1335 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. MacKenzie, S. H., Schipper, J. L. & Clark, A. C. The potential for caspases in drug discovery. Curr. Opin. Drug Discov. Develop. 13, 568–576 (2010).

    CAS  Google Scholar 

  156. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    CAS  PubMed  Google Scholar 

  158. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J. Clin. Invest. 123, 236–246 (2013).

    CAS  PubMed  Google Scholar 

  160. Lai, M. et al. The NLRP3-caspase 1 inflammasome negatively regulates autophagy via TLR4-TRIF in prion peptide-infected microglia. Front. Aging Neurosci. 10, 116 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Niemi, K. et al. Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J. Immunol. 186, 6119–6128 (2011).

    CAS  PubMed  Google Scholar 

  162. Babelova, A. et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J. Biol. Chem. 284, 24035–24048 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Yamasaki, K. et al. NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J. Biol. Chem. 284, 12762–12771 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Baron, L. et al. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death Dis. 6, e1629 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929–1934 (2004).

    CAS  PubMed  Google Scholar 

  166. Abdul-Sater, A. A. et al. Cyclic-di-GMP and cyclic-di-AMP activate the NLRP3 inflammasome. EMBO Rep. 14, 900–906 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Sha, W. et al. Human NLRP3 inflammasome senses multiple types of bacterial RNAs. Proc. Natl Acad. Sci. USA 111, 16059–16064 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kailasan Vanaja, S. et al. Bacterial RNA:DNA hybrids are activators of the NLRP3 inflammasome. Proc. Natl Acad. Sci. USA 111, 7765–7770 (2014).

    PubMed  PubMed Central  Google Scholar 

  169. Schweneker, K. et al. The mycobacterial cord factor adjuvant analogue trehalose-6,6′-dibehenate (TDB) activates the Nlrp3 inflammasome. Immunobiology 218, 664–673 (2013).

    CAS  PubMed  Google Scholar 

  170. Greaney, A. J., Leppla, S. H. & Moayeri, M. Bacterial exotoxins and the inflammasome. Front. Immunol. 6, 570 (2015).

    PubMed  PubMed Central  Google Scholar 

  171. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F. G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006).

    CAS  PubMed  Google Scholar 

  172. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    CAS  PubMed  Google Scholar 

  173. Mathur, A. et al. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat. Microbiol. 4, 362–374 (2019).

    CAS  PubMed  Google Scholar 

  174. Lamkanfi, M., Malireddi, R. K. & Kanneganti, T. D. Fungal zymosan and mannan activate the cryopyrin inflammasome. J. Biol. Chem. 284, 20574–20581 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Kankkunen, P. et al. (1,3)-beta-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. J. Immunol. 184, 6335–6342 (2010).

    CAS  PubMed  Google Scholar 

  176. He, Y. et al. 3, 4-Methylenedioxy-β-nitrostyrene inhibits NLRP3 activation by blocking assembly of the inflammasome. J. Biol. Chem. 289, 1142–1150 (2013).

    PubMed  PubMed Central  Google Scholar 

  177. Marchetti, C. et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl Acad. Sci. USA 115, E1530–E1539 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Juliana, C. et al. Anti-inflammatory compounds parthenolide and Bay 11–7082 are direct inhibitors of the inflammasome. J. Biol. Chem. 285, 9792–9802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Shim, D.-W. et al. BOT-4-one attenuates NLRP3 inflammasome activation: NLRP3 alkylation leading to the regulation of its ATPase activity and ubiquitination. Sci. Rep. 7, 15020 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Review was supported by the National Center for Advancing Translational Sciences, US National Institutes of Health (NIH), through grant KL2TR002490 awarded to K.V.S. and by the NIH through grants AI029564, CA156330, DK094779, AI109965 and AI067798 awarded to J.P.-Y.T. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jenny P.-Y. Ting.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Leucine-rich repeat domain

(LRR domain). In Toll-like receptors (TLRs), the LRR domain mediates the detection of microbial components; it may serve a similar role in certain NLRs (NACHT–LRR proteins). The LRR domain of NLRs and TLRs is structurally similar. It consists of leucine-rich amino acid strands forming a peptide loop. The loops occur as tandem repeats that together form a coil or solenoid and contain constant sequences, as well as unique insertions or variable residues for each ligand.

AIM2

A sensor that combines with the adaptor protein ASC and the protease caspase 1 to form the AIM2 inflammasome. It senses cytosolic double-stranded DNA from bacteria or viruses or from mislocalized self-DNA and contributes to infection defence.

P2X purinoceptor 7

(P2X7). An ATP-gated cation channel that is expressed by haematopoietic cells and participates in cell proliferation and apoptosis. It belongs to the family of purinoceptors for ATP and is responsible for the ATP-dependent activation of NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3).

Caecal ligation and puncture

An experimental model of peritonitis in rodents, in which the caecum is ligated and then punctured, thereby forming a small hole. This leads to leakage of intestinal bacteria into the peritoneal cavity and subsequent peritoneal infection.

Mitophagy

The selective removal of mitochondria by macroautophagy under conditions of nutrient starvation or mitochondrial stress.

Oxidative stress

Cells continuously produce reactive oxygen species (ROS) such as hydrogen peroxide or superoxide anions. Under physiological conditions, mitochondria are the main source, and cellular antioxidants ensure that the redox equilibrium is maintained. During inflammatory responses (and in cancer), excessive production of ROS leads to a metabolic condition known as oxidative stress, which can lead to apoptosis and necrosis.

Autophagy

A cytoplasmic bulk degradation system in which cytoplasmic cargo is targeted and is typically sequestered in double-membrane vesicles, leading to subsequent fusion with the lysosome. This process is essential for the response to starvation because it facilitates the recycling of cellular components. In addition, autophagy can be targeted to intracellular bacteria to restrict their growth.

Urate crystal model

A mouse model of crystal-induced peritonitis that activates the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome.

Pyroptosis

A lytic, inflammatory form of programmed cell death that is triggered by cleavage of gasdermin D by the inflammatory caspase 1, 4, 5 or 11. It is characterized by cytoplasmic swelling, early plasma membrane rupture and nuclear condensation. The cytoplasmic content is released into the extracellular space, and this is thought to augment inflammatory and repair responses.

Neutrophil extracellular traps

(NETs). Fibrous networks that are released into the extracellular environment by neutrophils. They are composed mainly of DNA but also contain proteins from neutrophil granules. NETs act as a mesh that traps microorganisms and exposes them to neutrophil-derived effector molecules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swanson, K.V., Deng, M. & Ting, J.PY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19, 477–489 (2019). https://doi.org/10.1038/s41577-019-0165-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0165-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing