Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding genomics and the immune environment of penile cancer to improve therapy

Abstract

The incidence of penile squamous cell carcinoma (PSCC) has increased in developed countries over the past decades owing to increased human papilloma virus (HPV) exposure. Despite successful surgical treatment of locoregional PSCC, effective treatment options for advanced disease are limited. The prognosis of patients with bulky nodal and metastatic PSCC is dismal and new management approaches are urgently needed. Genomic analyses have provided transformative knowledge on the genomic and molecular landscape and tumour microenvironment of PSCC. Around one-quarter of patients with metastatic PSCC have clinically actionable genomic alterations in mechanistic target of rapamycin, DNA repair and receptor tyrosine kinase pathways. These patients might benefit from combined and sequential targeted therapies. HPV vaccination might be another therapeutic option as PSCC is genetically similar to other HPV-driven cancers. In addition, 40–60% of PSCC tumours show strong PDL1 expression, and the frequency of mutational signatures suggestive of immunotherapy resistance is low, pointing to potential utility of immunotherapy for PSCC. Finally, identification of the composition of the penile microbiota and its biological role might lead to new cancer prevention and treatment strategies.

Key points

  • Penile squamous cell carcinoma (PSCC) displays a wide range of therapeutically targetable somatic alterations, and patients with treatment-resistant advanced PSCC might benefit from combined and sequential targeted therapies.

  • PSCC seems to be genetically similar to other human papilloma virus (HPV)-driven cancers and HPV vaccination might be a useful therapeutic option in nearly half of patients with PSCC infected with high-risk HPV.

  • Particular subsets of patients with PSCC might benefit from immunotherapy as some PSCC tumours display strong PDL1 expression and a low frequency of mutational signatures suggestive of immunotherapy resistance.

  • The evaluation of the spatial relationship between cellular and molecular components by multiplex immunofluorescence immunohistochemistry might provide valuable insights into the molecular profile of PSCC.

  • Further research to identify the composition of the penile microbiota and its association with HPV infection and penile cancer oncogenesis might lead to new cancer prevention and treatment strategies for PSCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potentially targetable alterations in penile squamous cell carcinoma.

Similar content being viewed by others

References

  1. Hansen, B. T., Orumaa, M., Lie, A. K., Brennhovd, B. & Nygard, M. Trends in incidence, mortality and survival of penile squamous cell carcinoma in Norway 1956–2015. Int. J. Cancer 142, 1586–1593 (2018).

    CAS  PubMed  Google Scholar 

  2. Pham, M. N. et al. Contemporary survival trends in penile cancer: results from the National Cancer Database. Urol. Oncol. 35, 674.e1–674.e9 (2017).

    Google Scholar 

  3. Arya, M. et al. Long-term trends in incidence, survival and mortality of primary penile cancer in England. Cancer Causes Control 24, 2169–2176 (2013).

    PubMed  Google Scholar 

  4. Ficarra, V., Akduman, B., Bouchot, O., Palou, J. & Tobias-Machado, M. Prognostic factors in penile cancer. Urology 76, S66–S73 (2010).

    PubMed  Google Scholar 

  5. Veeratterapillay, R., Teo, L., Asterling, S. & Greene, D. Oncologic outcomes of penile cancer treatment at a UK supraregional center. Urology 85, 1097–1103 (2015).

    PubMed  Google Scholar 

  6. Horenblas, S. Lymphadenectomy for squamous cell carcinoma of the penis. Part 2: the role and technique of lymph node dissection. BJU Int. 88, 473–483 (2001).

    CAS  PubMed  Google Scholar 

  7. Pagliaro, L. C. et al. Neoadjuvant paclitaxel, ifosfamide, and cisplatin chemotherapy for metastatic penile cancer: a phase II study. J. Clin. Oncol. 28, 3851–3857 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nicholson, S. et al. Phase II trial of docetaxel, cisplatin and 5FU chemotherapy in locally advanced and metastatic penis cancer (CRUK/09/001). Br. J. Cancer 109, 2554–2559 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Haas, G. P. et al. Cisplatin, methotrexate and bleomycin for the treatment of carcinoma of the penis: a Southwest Oncology Group study. J. Urol. 161, 1823–1825 (1999).

    CAS  PubMed  Google Scholar 

  10. Carthon, B. C., Ng, C. S., Pettaway, C. A. & Pagliaro, L. C. Epidermal growth factor receptor-targeted therapy in locally advanced or metastatic squamous cell carcinoma of the penis. BJU Int. 113, 871–877 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Necchi, A. et al. Panitumumab treatment for advanced penile squamous cell carcinoma when surgery and chemotherapy have failed. Clin. Genitourin. Cancer 14, 231–236 (2016).

    PubMed  Google Scholar 

  12. Hakenberg, O. W. et al. The diagnosis and treatment of penile cancer. Dtsch. Arztebl. Int. 115, 646–652 (2018).

    PubMed  Google Scholar 

  13. Djajadiningrat, R. S., Bergman, A. M., van Werkhoven, E., Vegt, E. & Horenblas, S. Neoadjuvant taxane-based combination chemotherapy in patients with advanced penile cancer. Clin. Genitourin. Cancer 13, 44–49 (2015).

    PubMed  Google Scholar 

  14. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02305654 (2019).

  15. Canter, D. J. et al. The International Penile Advanced Cancer Trial (InPACT): rationale and current status. Eur. Urol. Focus. 5, 706–709 (2019).

    PubMed  Google Scholar 

  16. Hernandez, B. Y. et al. Burden of invasive squamous cell carcinoma of the penis in the United States, 1998–2003. Cancer 113, 2883–2891 (2008).

    PubMed  Google Scholar 

  17. Pickering, L. M. et al. VinCaP: a phase II trial of vinflunine chemotherapy in locally-advanced and metastatic carcinoma of the penis (CRUK/12/021). J. Clin. Oncol. 36, 4514–4514 (2018).

    Google Scholar 

  18. Necchi, A. et al. First-line therapy with dacomitinib, an orally available pan-HER tyrosine kinase inhibitor, for locally advanced or metastatic penile squamous cell carcinoma: results of an open-label, single-arm, single-centre, phase 2 study. BJU Int. 121, 348–356 (2018).

    CAS  PubMed  Google Scholar 

  19. Clark, P. E. et al. Penile cancer: clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 11, 594–615 (2013).

    CAS  Google Scholar 

  20. Horton, R. H. & Lucassen, A. M. Recent developments in genetic/genomic medicine. Clin. Sci. 133, 697–708 (2019).

    Google Scholar 

  21. Subramaniam, D. S., Liu, S. V. & Giaccone, G. Novel approaches in cancer immunotherapy. Discov. Med. 21, 267–274 (2016).

    PubMed  Google Scholar 

  22. Hsu, F. S., Su, C. H. & Huang, K. H. A comprehensive review of US FDA-approved immune checkpoint inhibitors in urothelial carcinoma. J. Immunol. Res. 2017, 6940546 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Helmink, B. A., Gaudreau, P. O. & Wargo, J. A. Immune checkpoint blockade across the cancer care continuum. Immunity 48, 1077–1080 (2018).

    CAS  PubMed  Google Scholar 

  24. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).

    CAS  PubMed  Google Scholar 

  26. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Backes, D. M., Kurman, R. J., Pimenta, J. M. & Smith, J. S. Systematic review of human papillomavirus prevalence in invasive penile cancer. Cancer Causes Control 20, 449–457 (2009).

    PubMed  Google Scholar 

  29. Douglawi, A. & Masterson, T. A. Updates on the epidemiology and risk factors for penile cancer. Transl. Androl. Urol. 6, 785–790 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Alves, G. et al. Genetic imbalances in 26 cases of penile squamous cell carcinoma. Genes Chromosomes Cancer 31, 48–53 (2001).

    CAS  PubMed  Google Scholar 

  32. Poetsch, M., Schuart, B. J., Schwesinger, G., Kleist, B. & Protzel, C. Screening of microsatellite markers in penile cancer reveals differences between metastatic and nonmetastatic carcinomas. Mod. Pathol. 20, 1069–1077 (2007).

    CAS  PubMed  Google Scholar 

  33. Busso-Lopes, A. F. et al. Genomic profiling of human penile carcinoma predicts worse prognosis and survival. Cancer Prev. Res. 8, 149–156 (2015).

    CAS  Google Scholar 

  34. Feber, A. et al. CSN1 somatic mutations in penile squamous cell carcinoma. Cancer Res. 76, 4720–4727 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ceulemans, S., van der Ven, K. & Del-Favero, J. Targeted screening and validation of copy number variations. Methods Mol. Biol. 838, 311–328 (2012).

    CAS  PubMed  Google Scholar 

  36. Li, W. & Olivier, M. Current analysis platforms and methods for detecting copy number variation. Physiol. Genomics 45, 1–16 (2013).

    PubMed  Google Scholar 

  37. McDaniel, A. S. et al. Genomic profiling of penile squamous cell carcinoma reveals new opportunities for targeted therapy. Cancer Res. 75, 5219–5227 (2015).

    CAS  PubMed  Google Scholar 

  38. Seed, G. et al. Gene copy number estimation from targeted next-generation sequencing of prostate cancer biopsies: analytic validation and clinical qualification. Clin. Cancer Res. 23, 6070–6077 (2017).

    CAS  PubMed  Google Scholar 

  39. Hieronymus, H. et al. Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death. eLife 7, e37294 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jacob, J. M. et al. Comparative genomic profiling of refractory and metastatic penile and nonpenile cutaneous squamous cell carcinoma: implications for selection of systemic therapy. J. Urol. 201, 541–548 (2019).

    PubMed  Google Scholar 

  41. Tang, L. & Wang, K. Chronic inflammation in skin malignancies. J. Mol. Signal. 11, 2 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Halonen, P. et al. Lichen sclerosus and risk of cancer. Int. J. Cancer 140, 1998–2002 (2017).

    CAS  PubMed  Google Scholar 

  43. Tezal, M. Interaction between chronic inflammation and oral HPV infection in the etiology of head and neck cancers. Int. J. Otolaryngol. 2012, 575242 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. Powell, J. J. & Wojnarowska, F. Lichen sclerosus. Lancet 353, 1777–1783 (1999).

    CAS  PubMed  Google Scholar 

  45. Philippou, P. et al. Genital lichen sclerosus/balanitis xerotica obliterans in men with penile carcinoma: a critical analysis. BJU Int. 111, 970–976 (2013).

    PubMed  Google Scholar 

  46. Bazalinski, D., Przybek-Mita, J., Baranska, B. & Wiech, P. Marjolin’s ulcer in chronic wounds — review of available literature. Contemp. Oncol. 21, 197–202 (2017).

    Google Scholar 

  47. Green, A. C. & Olsen, C. M. Cutaneous squamous cell carcinoma: an epidemiological review. Br. J. Dermatol. 177, 373–381 (2017).

    CAS  PubMed  Google Scholar 

  48. Eitsuka, T., Tatewaki, N., Nishida, H., Nakagawa, K. & Miyazawa, T. Synergistic anticancer effect of tocotrienol combined with chemotherapeutic agents or dietary components: a review. Int. J. Mol. Sci. 17, 1605 (2016).

    PubMed Central  Google Scholar 

  49. Wieduwilt, M. J. & Moasser, M. M. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol. Life Sci. 65, 1566–1584 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Scaltriti, M. & Baselga, J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin. Cancer Res. 12, 5268–5272 (2006).

    CAS  PubMed  Google Scholar 

  51. Wang, S. & Li, J. Second-generation EGFR and ErbB tyrosine kinase inhibitors as first-line treatments for non-small cell lung cancer. Onco Targets Ther. 12, 6535–6548 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sorich, M. J. et al. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann. Oncol. 26, 13–21 (2015).

    CAS  PubMed  Google Scholar 

  53. Ali, S. M. et al. Comprehensive genomic profiling of advanced penile carcinoma suggests a high frequency of clinically relevant genomic alterations. Oncologist 21, 33–39 (2016).

    CAS  PubMed  Google Scholar 

  54. Helsten, T. et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res. 22, 259–267 (2016).

    CAS  PubMed  Google Scholar 

  55. Fumarola, C. et al. Expanding the arsenal of FGFR inhibitors: a novel chloroacetamide derivative as a new irreversible agent with anti-proliferative activity against FGFR1-amplified lung cancer cell lines. Front. Oncol. 9, 179 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Konecny, G. E. & Kristeleit, R. S. PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Br. J. Cancer 115, 1157–1173 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yi, M. et al. Advances and perspectives of PARP inhibitors. Exp. Hematol. Oncol. 8, 29 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. Jin, M. H. & Oh, D. Y. ATM in DNA repair in cancer. Pharmacol. Ther. 203, 107391 (2019).

    CAS  PubMed  Google Scholar 

  59. Chen, C. C. et al. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair. Proc. Natl Acad. Sci. USA 114, 7665–7670 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604 (2001).

    CAS  PubMed  Google Scholar 

  61. Zhu, Y. et al. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev. 15, 859–876 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Castellano, E. & Downward, J. RAS interaction with PI3K: more than just another effector pathway. Genes. Cancer 2, 261–274 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yap, Y. S. et al. The NF1 gene revisited — from bench to bedside. Oncotarget 5, 5873–5892 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Gross, A. M. et al. Selumetinib in children with inoperable plexiform neurofibromas. N. Engl. J. Med. 382, 1430–1442 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Grimaldi, A. M. et al. MEK inhibitors in the treatment of metastatic melanoma and solid tumors. Am. J. Clin. Dermatol. 18, 745–754 (2017).

    PubMed  Google Scholar 

  66. Hamada, K. et al. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 19, 2054–2065 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tian, T., Li, X. & Zhang, J. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int. J. Mol. Sci. 20, 755 (2019).

    CAS  PubMed Central  Google Scholar 

  68. Matsumoto, C. S. et al. PI3K-PTEN dysregulation leads to mTOR-driven upregulation of the core clock gene BMAL1 in normal and malignant epithelial cells. Oncotarget 7, 42393–42407 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Chavez-MacGregor, M. & Gonzalez-Angulo, A. M. Everolimus in the treatment of hormone receptor-positive breast cancer. Expert Opin. Investig. Drugs 21, 1835–1843 (2012).

    CAS  PubMed  Google Scholar 

  70. Zhou, H., Luo, Y. & Huang, S. Updates of mTOR inhibitors. Anticancer Agents Med. Chem. 10, 571–581 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Andre, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).

    CAS  PubMed  Google Scholar 

  72. Bader, A. G., Kang, S. & Vogt, P. K. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc. Natl Acad. Sci. USA 103, 1475–1479 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Budzinska, M. A. et al. Accumulation of deleterious passenger mutations is associated with the progression of hepatocellular carcinoma. PLoS ONE 11, e0162586 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Kryukov, G. V., Pennacchio, L. A. & Sunyaev, S. R. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am. J. Hum. Genet. 80, 727–739 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Marchi, F. A. et al. Multidimensional integrative analysis uncovers driver candidates and biomarkers in penile carcinoma. Sci. Rep. 7, 6707 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Voges, Y. et al. Effects of YM155 on survivin levels and viability in neuroblastoma cells with acquired drug resistance. Cell Death Dis. 7, e2410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, F., Aljahdali, I. & Ling, X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? J. Exp. Clin. Cancer Res. 38, 368 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Natale, R. et al. Evaluation of antitumor activity using change in tumor size of the survivin antisense oligonucleotide LY2181308 in combination with docetaxel for second-line treatment of patients with non-small-cell lung cancer: a randomized open-label phase II study. J. Thorac. Oncol. 9, 1704–1708 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Clemens, M. R. et al. Phase II, multicenter, open-label, randomized study of YM155 plus docetaxel as first-line treatment in patients with HER2-negative metastatic breast cancer. Breast Cancer Res. Treat. 149, 171–179 (2015).

    CAS  PubMed  Google Scholar 

  80. Li, D., Hu, C. & Li, H. Survivin as a novel target protein for reducing the proliferation of cancer cells. Biomed. Rep. 8, 399–406 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yamanaka, K. et al. Antitumor activity of YM155, a selective small-molecule survivin suppressant, alone and in combination with docetaxel in human malignant melanoma models. Clin. Cancer Res. 17, 5423–5431 (2011).

    CAS  PubMed  Google Scholar 

  82. Decaudin, D. & Le Tourneau, C. Combinations of targeted therapies in human cancers. Aging 8, 2258–2259 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Johnson, D. B. et al. Combined BRAF (dabrafenib) and MEK inhibition (trametinib) in patients with BRAFV600-mutant melanoma experiencing progression with single-agent BRAF inhibitor. J. Clin. Oncol. 32, 3697–3704 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Blackwell, K. L. et al. Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 Study. J. Clin. Oncol. 30, 2585–2592 (2012).

    CAS  PubMed  Google Scholar 

  85. Lim, S. Y., Menzies, A. M. & Rizos, H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer 123, 2118–2129 (2017).

    CAS  PubMed  Google Scholar 

  86. Olesen, T. B. et al. Prevalence of human papillomavirus DNA and p16INK4a in penile cancer and penile intraepithelial neoplasia: a systematic review and meta-analysis. Lancet Oncol. 20, 145–158 (2019).

    CAS  PubMed  Google Scholar 

  87. Mannweiler, S., Sygulla, S., Winter, E. & Regauer, S. Two major pathways of penile carcinogenesis: HPV-induced penile cancers overexpress p16ink4a, HPV-negative cancers associated with dermatoses express p53, but lack p16ink4a overexpression. J. Am. Acad. Dermatol. 69, 73–81 (2013).

    CAS  PubMed  Google Scholar 

  88. Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999).

    CAS  PubMed  Google Scholar 

  89. Rivlin, N., Brosh, R., Oren, M. & Rotter, V. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2, 466–474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hall, P. A. & Lane, D. P. p53 in tumour pathology: can we trust immunohistochemistry? Revisited! J. Pathol. 172, 1–4 (1994).

    CAS  PubMed  Google Scholar 

  91. Rocha, R. M. et al. A clinical, pathologic, and molecular study of p53 and murine double minute 2 in penile carcinogenesis and its relation to prognosis. Hum. Pathol. 43, 481–488 (2012).

    CAS  PubMed  Google Scholar 

  92. Zhang, J. et al. Prognostic significance of p16INK4a expression in penile squamous cell carcinoma: a meta-analysis with trial sequential analysis. Biomed. Res. Int. 2018, 8345893 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Albers, A. E., Qian, X., Kaufmann, A. M. & Coordes, A. Meta analysis: HPV and p16 pattern determines survival in patients with HNSCC and identifies potential new biologic subtype. Sci. Rep. 7, 16715 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. Lin, J., Albers, A. E., Qin, J. & Kaufmann, A. M. Prognostic significance of overexpressed p16INK4a in patients with cervical cancer: a meta-analysis. PLoS ONE 9, e106384 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Sun, G. et al. The prognostic value of HPV combined p16 status in patients with anal squamous cell carcinoma: a meta-analysis. Oncotarget 9, 8081–8088 (2018).

    PubMed  Google Scholar 

  96. Sand, F. L., Rasmussen, C. L., Frederiksen, M. H., Andersen, K. K. & Kjaer, S. K. Prognostic significance of HPV and p16 status in men diagnosed with penile cancer: a systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 27, 1123–1132 (2018).

    CAS  PubMed  Google Scholar 

  97. Davis, A., Gao, R. & Navin, N. Tumor evolution: linear, branching, neutral or punctuated? Biochim. Biophys. Acta Rev. Cancer 1867, 151–161 (2017).

    CAS  PubMed  Google Scholar 

  98. Chahoud, J. et al. Penile squamous cell carcinoma is genomically similar to other HPV-driven tumors. J. Clin. Oncol. 37, 505–505 (2019).

    Google Scholar 

  99. Jacob, J. et al. Penile and uterine cervical squamous cell carcinomas: a comparative genomic profiling study. J. Clin. Oncol. 37, 514–514 (2019).

    Google Scholar 

  100. Tward, J. The case for nonsurgical therapy of nonmetastatic penile cancer. Nat. Rev. Urol. 15, 574–584 (2018).

    PubMed  Google Scholar 

  101. Stankiewicz, E. et al. Alternative HER/PTEN/Akt pathway activation in HPV positive and negative penile carcinomas. PLoS ONE 6, e17517 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hafner, N. et al. Integration of the HPV16 genome does not invariably result in high levels of viral oncogene transcripts. Oncogene 27, 1610–1617 (2008).

    CAS  PubMed  Google Scholar 

  103. Ghittoni, R. et al. The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 40, 1–13 (2010).

    CAS  PubMed  Google Scholar 

  104. Hoppe-Seyler, K., Bossler, F., Braun, J. A., Herrmann, A. L. & Hoppe-Seyler, F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 26, 158–168 (2018).

    CAS  PubMed  Google Scholar 

  105. Martinez-Zapien, D. et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529, 541–545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chabeda, A. et al. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res. 5, 46–58 (2018).

    PubMed  Google Scholar 

  107. Hung, C. F., Ma, B., Monie, A., Tsen, S. W. & Wu, T. C. Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin. Biol. Ther. 8, 421–439 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02426892 (2020).

  109. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02858310 (2020).

  110. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03418480 (2020).

  111. Qin, Y. et al. Cervical cancer neoantigen landscape and immune activity is associated with human papillomavirus master regulators. Front. Immunol. 8, 689 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Kumar, D. et al. Integrating transcriptome and proteome profiling: strategies and applications. Proteomics 16, 2533–2544 (2016).

    CAS  PubMed  Google Scholar 

  113. Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018).

    CAS  PubMed  Google Scholar 

  114. Kuasne, H. et al. Genome-wide methylation and transcriptome analysis in penile carcinoma: uncovering new molecular markers. Clin. Epigenetics 7, 46 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. Frohlich, E. & Wahl, R. Chemotherapy and chemoprevention by thiazolidinediones. Biomed. Res. Int. 2015, 845340 (2015).

    PubMed  PubMed Central  Google Scholar 

  116. Kuasne, H. et al. Integrative miRNA and mRNA analysis in penile carcinomas reveals markers and pathways with potential clinical impact. Oncotarget 8, 15294–15306 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Mueller, E. et al. Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc. Natl Acad. Sci. USA 97, 10990–10995 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Khodarev, N. N., Roizman, B. & Weichselbaum, R. R. Molecular pathways: interferon/STAT1 pathway: role in the tumor resistance to genotoxic stress and aggressive growth. Clin. Cancer Res. 18, 3015–3021 (2012).

    CAS  PubMed  Google Scholar 

  119. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 17, 78 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. Fetter, T. et al. Selective Janus kinase 1 inhibition is a promising therapeutic approach for lupus erythematosus skin lesions. Front. Immunol. 11, 344 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Saeed, S., Keehn, C. A., Khalil, F. K. & Morgan, M. B. Immunohistochemical expression of Bax and Bcl-2 in penile carcinoma. Ann. Clin. Lab. Sci. 35, 91–96 (2005).

    CAS  PubMed  Google Scholar 

  122. Brown, V. L. et al. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J. Invest. Dermatol. 122, 1284–1292 (2004).

    CAS  PubMed  Google Scholar 

  123. Kuasne, H., Marchi, F. A., Rogatto, S. R. & de Syllos Colus, I. M. Epigenetic mechanisms in penile carcinoma. Int. J. Mol. Sci. 14, 10791–10808 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. Ferreux, E. et al. Evidence for at least three alternative mechanisms targeting the p16INK4A/cyclin D/Rb pathway in penile carcinoma, one of which is mediated by high-risk human papillomavirus. J. Pathol. 201, 109–118 (2003).

    CAS  PubMed  Google Scholar 

  125. Yanagawa, N., Osakabe, M., Hayashi, M., Tamura, G. & Motoyama, T. Detection of HPV-DNA, p53 alterations, and methylation in penile squamous cell carcinoma in Japanese men. Pathol. Int. 58, 477–482 (2008).

    CAS  PubMed  Google Scholar 

  126. Poetsch, M. et al. Alterations in the tumor suppressor gene p16INK4A are associated with aggressive behavior of penile carcinomas. Virchows Arch. 458, 221–229 (2011).

    CAS  PubMed  Google Scholar 

  127. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    CAS  PubMed  Google Scholar 

  128. Nelson, P. T. et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Methods 1, 155–161 (2004).

    CAS  PubMed  Google Scholar 

  129. Zhang, L. et al. MicroRNA expression profile in penile cancer revealed by next-generation small RNA sequencing. PLoS ONE 10, e0131336 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Barzon, L. et al. Profiling of expression of human papillomavirus-related cancer miRNAs in penile squamous cell carcinomas. Am. J. Pathol. 184, 3376–3383 (2014).

    CAS  PubMed  Google Scholar 

  131. Kuasne, H. et al. Nuclear loss and cytoplasmic expression of androgen receptor in penile carcinomas: role as a driver event and as a prognosis factor. Virchows Arch. 473, 607–614 (2018).

    CAS  PubMed  Google Scholar 

  132. Li, X. J., Ren, Z. J. & Tang, J. H. MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis. 5, e1327 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chaux, A. et al. Comparison of morphologic features and outcome of resected recurrent and nonrecurrent squamous cell carcinoma of the penis: a study of 81 cases. Am. J. Surg. Pathol. 33, 1299–1306 (2009).

    PubMed  Google Scholar 

  134. Kattan, M. W. et al. Nomogram predictive of cancer specific survival in patients undergoing partial or total amputation for squamous cell carcinoma of the penis. J. Urol. 175, 2103–2108 (2006).

    PubMed  Google Scholar 

  135. Grabowski, P., Kustatscher, G. & Rappsilber, J. Epigenetic variability confounds transcriptome but not proteome profiling for coexpression-based gene function prediction. Mol. Cell Proteom. 17, 2082–2090 (2018).

    CAS  Google Scholar 

  136. Dix, B., Robbins, P., Carrello, S., House, A. & Iacopetta, B. Comparison of p53 gene mutation and protein overexpression in colorectal carcinomas. Br. J. Cancer 70, 585–590 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, A. R. et al. EGFR mutations in lung adenocarcinomas: clinical testing experience and relationship to EGFR gene copy number and immunohistochemical expression. J. Mol. Diagn. 10, 242–248 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kitamura, A., Hosoda, W., Sasaki, E., Mitsudomi, T. & Yatabe, Y. Immunohistochemical detection of EGFR mutation using mutation-specific antibodies in lung cancer. Clin. Cancer Res. 16, 3349–3355 (2010).

    CAS  PubMed  Google Scholar 

  139. Sholl, L. M. et al. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am. J. Clin. Pathol. 133, 922–934 (2010).

    CAS  PubMed  Google Scholar 

  140. Lehmann-Che, J. et al. Immunohistochemical and molecular analyses of HER2 status in breast cancers are highly concordant and complementary approaches. Br. J. Cancer 104, 1739–1746 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kuboki, Y. et al. Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer. Ann. Oncol. 27, 127–133 (2016).

    CAS  PubMed  Google Scholar 

  142. Lopes, A. et al. p53 as a new prognostic factor for lymph node metastasis in penile carcinoma: analysis of 82 patients treated with amputation and bilateral lymphadenectomy. J. Urol. 168, 81–86 (2002).

    PubMed  Google Scholar 

  143. Martins, A. C., Faria, S. M., Cologna, A. J., Suaid, H. J. & Tucci, S. Jr. Immunoexpression of p53 protein and proliferating cell nuclear antigen in penile carcinoma. J. Urol. 167, 89–92 (2002).

    CAS  PubMed  Google Scholar 

  144. Zargar-Shoshtari, K. et al. Clinical significance of p53 and p16INK4A status in a contemporary North American penile carcinoma cohort. Clin. Genitourin. Cancer 14, 346–351 (2016).

    PubMed  Google Scholar 

  145. Liu, J. Y. et al. The risk factors for the presence of pelvic lymph node metastasis in penile squamous cell carcinoma patients with inguinal lymph node dissection. World J. Urol. 31, 1519–1524 (2013).

    PubMed  Google Scholar 

  146. Zargar-Shoshtari, K., Sharma, P. & Spiess, P. E. Insight into novel biomarkers in penile cancer: redefining the present and future treatment paradigm? Urol. Oncol. 36, 433–439 (2018).

    CAS  PubMed  Google Scholar 

  147. Laniado, M. E., Lowdell, C., Mitchell, H. & Christmas, T. J. Squamous cell carcinoma antigen: a role in the early identification of nodal metastases in men with squamous cell carcinoma of the penis. BJU Int. 92, 248–250 (2003).

    CAS  PubMed  Google Scholar 

  148. Zhu, Y., Zhou, X. Y., Yao, X. D., Dai, B. & Ye, D. W. The prognostic significance of p53, Ki-67, epithelial cadherin and matrix metalloproteinase-9 in penile squamous cell carcinoma treated with surgery. BJU Int. 100, 204–208 (2007).

    CAS  PubMed  Google Scholar 

  149. Steffens, S. et al. High CRP values predict poor survival in patients with penile cancer. BMC Cancer 13, 223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Attalla, K., Sfakianos, J. P. & Galsky, M. D. Current role of checkpoint inhibitors in urologic cancers. Cancer Treat. Res. 175, 241–258 (2018).

    PubMed  Google Scholar 

  152. Ottenhof, S. R. et al. Expression of programmed death ligand 1 in penile cancer is of prognostic value and associated with HPV status. J. Urol. 197, 690–697 (2017).

    PubMed  Google Scholar 

  153. Udager, A. M. et al. Frequent PD-L1 expression in primary and metastatic penile squamous cell carcinoma: potential opportunities for immunotherapeutic approaches. Ann. Oncol. 27, 1706–1712 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Cocks, M. et al. Immune-checkpoint status in penile squamous cell carcinoma: a North American cohort. Hum. Pathol. 59, 55–61 (2017).

    CAS  PubMed  Google Scholar 

  155. Udall, M. et al. PD-L1 diagnostic tests: a systematic literature review of scoring algorithms and test-validation metrics. Diagn. Pathol. 13, 12 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Ottenhof, S. R. et al. The prognostic value of immune factors in the tumor microenvironment of penile squamous cell carcinoma. Front. Immunol. 9, 1253 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Cheng, Z., Zhang, D., Gong, B., Wang, P. & Liu, F. CD163 as a novel target gene of STAT3 is a potential therapeutic target for gastric cancer. Oncotarget 8, 87244–87262 (2017).

    PubMed  PubMed Central  Google Scholar 

  158. Garvin, S., Oda, H., Arnesson, L. G., Lindstrom, A. & Shabo, I. Tumor cell expression of CD163 is associated to postoperative radiotherapy and poor prognosis in patients with breast cancer treated with breast-conserving surgery. J. Cancer Res. Clin. Oncol. 144, 1253–1263 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Buechler, C. et al. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J. Leukoc. Biol. 67, 97–103 (2000).

    CAS  PubMed  Google Scholar 

  160. Maniecki, M. B. et al. Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells. Int. J. Cancer 131, 2320–2331 (2012).

    CAS  PubMed  Google Scholar 

  161. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gooden, M. J., de Bock, G. H., Leffers, N., Daemen, T. & Nijman, H. W. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br. J. Cancer 105, 93–103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Peranzoni, E. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc. Natl Acad. Sci. USA 115, E4041–E4050 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Hennequart, M. et al. Constitutive IDO1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance. Cancer Immunol. Res. 5, 695–709 (2017).

    CAS  PubMed  Google Scholar 

  165. Golijanin, D. et al. Cyclooxygenase-2 and microsomal prostaglandin E synthase-1 are overexpressed in squamous cell carcinoma of the penis. Clin. Cancer Res. 10, 1024–1031 (2004).

    CAS  PubMed  Google Scholar 

  166. Surace, M. et al. Automated multiplex immunofluorescence panel for immuno-oncology studies on formalin-fixed carcinoma tissue specimens. J. Vis. Exp. 143, e58390 (2019).

    Google Scholar 

  167. Feng, Z. et al. Multiparametric immune profiling in HPV-oral squamous cell cancer. JCI Insight 2, e93652 (2017).

    PubMed Central  Google Scholar 

  168. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  169. Bethmann, D., Feng, Z. & Fox, B. A. Immunoprofiling as a predictor of patient’s response to cancer therapy — promises and challenges. Curr. Opin. Immunol. 45, 60–72 (2017).

    CAS  PubMed  Google Scholar 

  170. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Chang, L., Chang, M., Chang, H. M. & Chang, F. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl. Immunohistochem. Mol. Morphol. 26, e15–e21 (2018).

    CAS  PubMed  Google Scholar 

  173. Ratti, M., Lampis, A., Hahne, J. C., Passalacqua, R. & Valeri, N. Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol. Life Sci. 75, 4151–4162 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Le, D. T. et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J. Clin. Oncol. 38, 11–19 (2020).

    CAS  PubMed  Google Scholar 

  175. Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5, 43–51 (2015).

    CAS  PubMed  Google Scholar 

  176. Champiat, S. et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin. Cancer Res. 23, 1920–1928 (2017).

    CAS  PubMed  Google Scholar 

  177. Singavi, A. K. et al. Predictive biomarkers for hyper-progression (HP) in response to immune checkpoint inhibitors (ICI): analysis of somatic alterations (SAs). Ann. Oncol. 28(Suppl.5), v403–v427 (2017).

    Google Scholar 

  178. Kato, S. et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin. Cancer Res. 23, 4242–4250 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wade, M., Li, Y. C. & Wahl, G. M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13, 83–96 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Koyama, S. et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res. 76, 999–1008 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Skoulidis, F. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8, 822–835 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Migden, M. R. et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med. 379, 341–351 (2018).

    CAS  PubMed  Google Scholar 

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03391479 (2019).

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03686332 (2019).

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02834013 (2020).

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02496208 (2020).

  187. Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Bhatt, A. P., Redinbo, M. R. & Bultman, S. J. The role of the microbiome in cancer development and therapy. CA Cancer J. Clin. 67, 326–344 (2017).

    PubMed  PubMed Central  Google Scholar 

  189. Goedert, J. J. et al. Fecal microbiota characteristics of patients with colorectal adenoma detected by screening: a population-based study. EBioMedicine 2, 597–603 (2015).

    PubMed  PubMed Central  Google Scholar 

  190. Urbaniak, C. et al. The microbiota of breast tissue and its association with breast cancer. Appl. Env. Microbiol. 82, 5039–5048 (2016).

    CAS  Google Scholar 

  191. Heshiki, Y. et al. Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome 8, 28 (2020).

    PubMed  PubMed Central  Google Scholar 

  192. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Consoli, M. L. et al. Randomized clinical trial: impact of oral administration of Saccharomyces boulardii on gene expression of intestinal cytokines in patients undergoing colon resection. J. Parenter. Enter. Nutr. 40, 1114–1121 (2016).

    CAS  Google Scholar 

  194. Laniewski, P., Ilhan, Z. E. & Herbst-Kralovetz, M. M. The microbiome and gynaecological cancer development, prevention and therapy. Nat. Rev. Urol. 17, 232–250 (2020).

    CAS  PubMed  Google Scholar 

  195. Norenhag, J. et al. The vaginal microbiota, human papillomavirus and cervical dysplasia: a systematic review and network meta-analysis. BJOG 127, 171–180 (2020).

    CAS  PubMed  Google Scholar 

  196. Chao, X. P. et al. Correlation between the diversity of vaginal microbiota and the risk of high-risk human papillomavirus infection. Int. J. Gynecol. Cancer 29, 28–34 (2019).

    PubMed  Google Scholar 

  197. Liu, C. M. et al. Penile anaerobic dysbiosis as a risk factor for HIV infection. MBio 8, e00996-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  198. Price, L. B. et al. The effects of circumcision on the penis microbiome. PLoS ONE 5, e8422 (2010).

    PubMed  PubMed Central  Google Scholar 

  199. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33, 570–580 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Onywera, H. et al. The penile microbiota of black South African men: relationship with human papillomavirus and HIV infection. BMC Microbiol. 20, 78 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Weinstock, G. M. Genomic approaches to studying the human microbiota. Nature 489, 250–256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Group, N. H. W. et al. The NIH human microbiome project. Genome Res. 19, 2317–2323 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.M.A. and P.E.S. researched data for the article. A.M.A. and J.C. made substantial contributions to discussion of the article content. A.M.A. and J.J.A. wrote the manuscript. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Philippe E. Spiess.

Ethics declarations

Competing interests

J.S.R.: employment: Foundation Medicine; leadership: Foundation Medicine; stock and other ownership interests: Foundation Medicine; research funding: Foundation Medicine. A.N.: employment: Bayer A.G.; stock and other ownership interests: Bayer A.G.; honoraria: Roche Merck, AstraZeneca, Janssen Pharmaceuticals, and Foundation Medicine; consulting or advisory role: Merck Sharp & Dohme, Roche, Bayer A.G., AstraZeneca, Clovis Oncology, Janssen Pharmaceuticals, Incyte, Seattle Genetics, Astellas Pharma, Bristol-Myers Squibb and Rainier Therapeutics; research funding: Merck Sharp & Dohme (to the institute) and AstraZeneca (to the institute); travel, accommodations, expenses: Roche, Merck Sharp & Dohme, AstraZeneca and Janssen Pharmaceuticals. P.E.S.: consulting or advisory role: Genentech and Pfizer. A.M.A., J.C., J.J.A., M.A. and A.M. declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks M. Albersen, M. Burger and J. Tward for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, A.M., Chahoud, J., Adashek, J.J. et al. Understanding genomics and the immune environment of penile cancer to improve therapy. Nat Rev Urol 17, 555–570 (2020). https://doi.org/10.1038/s41585-020-0359-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0359-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer