Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gut bacterial phospholipase Ds support disease-associated metabolism by generating choline

Abstract

The essential nutrient choline is metabolized by gut bacteria to the disease-associated metabolite trimethylamine (TMA). However, most of the choline obtained via the diet and present in the human body is incorporated into larger metabolites, including the lipid phosphatidylcholine (PC). Here, we report that many choline-utilizing gut microorganisms can hydrolyse PC using a phospholipase D (PLD) enzyme and further convert the released choline to TMA. Genetic and in vitro characterization of the PLD from Escherichia coli MS 200-1 showed this enzyme is essential for bacterial hydrolysis of PC and prefers this substrate. PLDs are also found in gut bacterial isolates that are unable to convert choline to TMA, suggesting that additional members of the gut microbiota may influence access to this substrate. Unexpectedly, this PLD is only distantly related to characterized PLDs from pathogenic bacteria, suggesting a distinct evolutionary history. Together, these results reveal a previously underappreciated role for gut microorganisms in phospholipid metabolism and a potential target for inhibiting TMA production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The mechanisms by which gut bacteria access choline from choline-containing precursors are poorly defined.
Fig. 2: Choline-utilizing (cut+) gut bacteria can access free choline from PC through the action of a PLD enzyme.
Fig. 3: The E. coli MS 200-1 PLD prefers PC as a substrate.
Fig. 4: Phylogenetic analysis of PLDs.
Fig. 5: PLD-encoding bacteria lacking the cut gene cluster can support choline metabolism by other microorganisms.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533-14 (2016).

    Article  Google Scholar 

  2. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  Google Scholar 

  3. Koppel, N. & Balskus, E. P. Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem. Biol. 23, 18–30 (2016).

    Article  CAS  Google Scholar 

  4. Arora, T. & Backhed, F. The gut microbiota and metabolic disease: current understanding and future perspectives. J. Intern. Med. 280, 339–349 (2016).

    Article  CAS  Google Scholar 

  5. Kinross, J. M., Darzi, A. W. & Nicholson, J. K. Gut microbiome-host interactions in health and disease. Genome Med. 3, 14 (2011).

    Article  Google Scholar 

  6. Zeisel, S. H. & da Costa, K.-A. Choline: an essential nutrient for public health. Nutr. Rev. 67, 615–623 (2009).

    Article  Google Scholar 

  7. Zeisel, S. H. Choline: clinical nutrigenetic/nutrigenoic approaches for identification of functions and dietary requirements. World Rev. Nutr. Diet. 101, 73–83 (2010).

    Article  CAS  Google Scholar 

  8. Hayward, H. R. & Stadtman, T. C. Anaerobic degradation of choline. I. Fermentation of choline by an anaerobic, cytochrome-producing bacterium, Vibrio cholinicus n. sp. J. Bacteriol. 78, 557–561 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl Acad. Sci. USA 109, 21307–21312 (2012).

    Article  CAS  Google Scholar 

  10. Craciun, S., Marks, J. A. & Balskus, E. P. Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. ACS Chem. Biol. 9, 1408–1413 (2014).

    Article  CAS  Google Scholar 

  11. Krueger, S. K. & Williams, D. E. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol. Ther. 106, 357–387 (2005).

    Article  CAS  Google Scholar 

  12. Mackay, R. J., McEntyre, C. J., Henderson, C., Lever, M. & George, P. M. Trimethylaminuria: causes and diagnosis of a socially distressing condition. Clin. Biochem. Rev. 32, 33–43 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Mitchell, S. C. & Smith, R. L. Trimethylaminuria: the fish malodor syndrome. Drug Metab. Dispos. 29, 517–521 (2001).

    CAS  PubMed  Google Scholar 

  14. Sherriff, J. L., OSullivan, T. A., Properzi, C., Oddo, J. L. & Adams, L. A. Choline, its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes. Adv. Nutr. 7, 5–13 (2016).

    Article  CAS  Google Scholar 

  15. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2012).

    Article  Google Scholar 

  16. Tang, W. H. W. et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 116, 448–455 (2015).

    Article  CAS  Google Scholar 

  17. Miao, J. et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nature 6, 6498 (2015).

    CAS  Google Scholar 

  18. Zeisel, S. H. & Warrier, M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu. Rev. Nutr. 37, 157–181 (2017).

    Article  CAS  Google Scholar 

  19. Corbin, K. D. & Zeisel, S. H. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroen. 28, 159–165 (2012).

    Article  CAS  Google Scholar 

  20. Jacobs, R. L., van der Veen, J. N. & Vance, D. E. Finding the balance: the role of S-adenosylmethionine and phosphatidylcholine metabolism in development of nonalcoholic fatty liver disease. Hepatology 58, 1207–1209 (2013).

    Article  CAS  Google Scholar 

  21. Cohn, J. S., Kamili, A., Wat, E., Chung, R. W. S. & Tandy, S. Dietary phospholipids and intestinal cholesterol absorption. Nutrients 2, 116–127 (2010).

    Article  CAS  Google Scholar 

  22. Zeisel, S. H., Mar, M.-H., Howe, J. C. & Holden, J. M. Concentrations of choline-containing compounds and betaine in common foods. J. Nutr. 133, 1302–1307 (2003).

    Article  CAS  Google Scholar 

  23. Northfield, T. C. & Hofmann, A. F. Biliary lipid output during three meals and an overnight fast. I. Relationship to bile acid pool size and cholesterol saturation of bile in gallstone and control subjects. Gut 16, 1–11 (1975).

    Article  CAS  Google Scholar 

  24. Braun, A. et al. Alterations of phospholipid concentration and species composition of the intestinal mucus barrier in ulcerative colitis: a clue to pathogenesis. Inflam. Bowel Dis. 15, 1705–1720 (2009).

    Article  Google Scholar 

  25. Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  Google Scholar 

  26. Romano, K. A., Vivas, E. I., Amador-Noguez, D. & Rey, F. E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6, e02481-14 (2015).

    Article  Google Scholar 

  27. Romano, K. A. et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microb. 22, 279–290 (2017).

    Article  CAS  Google Scholar 

  28. Heller, M. Phospholipase D. Adv. Lipid Res. 16, 267–326 (1978).

    Article  CAS  Google Scholar 

  29. Waite, M. The PLD superfamily: insights into catalysis. Biochim. Biophys. Acta 1439, 187–197 (1999).

    Article  CAS  Google Scholar 

  30. Wang, X. Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog. Lipid Res. 39, 109–149 (2000).

    Article  CAS  Google Scholar 

  31. Frohman, M. A., Sung, T. C. & Morris, A. J. Mammalian phospholipase D structure and regulation. Biochim. Biophys. Acta 1439, 175–186 (1999).

    Article  CAS  Google Scholar 

  32. Lery, L. M. S. et al. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol. 12, 41 (2014).

    Article  Google Scholar 

  33. Uesugi, Y. & Hatanaka, T. Phospholipase D mechanism using Streptomyces PLD. BBA-Mol. Cell Biol. L. 1791, 962–969 (2009).

    Article  CAS  Google Scholar 

  34. Barksdale, L., Linder, R., Sulea, I. T. & Pollice, M. Phospholipase D activity of Corynebacterium pseudotuberculosis (Corynebacterium ovis) and Corynebacterium ulcerans, a distinctive marker within the genus Corynebacterium. J. Clin. Microbiol. 13, 335–343 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacobs, A. C. et al. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect. Immun. 78, 1952–1962 (2010).

    Article  CAS  Google Scholar 

  36. Sung, T. C. et al. Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J. 16, 4519–4530 (1997).

    Article  CAS  Google Scholar 

  37. Leiros, I., McSweeney, S. & Hough, E. The reaction mechanism of phospholipase D from Streptomyces sp. strain PMF. Snapshots along the reaction pathway reveal a pentacoordinate reaction intermediate and an unexpected final product. J. Mol. Biol. 339, 805–820 (2004).

    Article  CAS  Google Scholar 

  38. Spencer, C. & Brown, H. A. Biochemical characterization of a Pseudomonas aeruginosa phospholipase D. Biochemistry 54, 1208–1218 (2015).

    Article  CAS  Google Scholar 

  39. Liscovitch, M., Czarny, M., Fiucci, G. & Tang, X. Phospholipase D: molecular and cell biology of a novel gene family. Biochem. J. 345, 401–415 (2000).

    Article  CAS  Google Scholar 

  40. Gottlin, E. B., Rudolph, A. E., Zhao, Y., Matthews, H. R. & Dixon, J. E. Catalytic mechanism of the phospholipase D superfamily proceeds via a covalent phosphohistidine intermediate. Proc. Natl Acad. Sci. USA 95, 9202–9207 (1998).

    Article  CAS  Google Scholar 

  41. Yang, H. & Roberts, M. F. Cloning, overexpression, and characterization of a bacterial Ca2+-dependent phospholipase D. Protein Sci. 11, 2958–2968 (2009).

    Article  Google Scholar 

  42. Bodea, S., Funk, M. A., Balskus, E. P. & Drennan, C. L. Molecular basis of C–N bond cleavage by the glycyl radical enzyme choline tTrimethylamine-lyase. Cell Chem. Biol. 23, 1206–1216 (2016).

    Article  CAS  Google Scholar 

  43. Su, W. et al. 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol. Pharmacol. 75, 437–446 (2009).

    Article  CAS  Google Scholar 

  44. Scott, S. A. et al. Discovery of desketoraloxifene analogues as inhibitors of mammalian, Pseudomonas aeruginosa, and NAPE phospholipase D enzymes. ACS Chem. Biol. 10, 421–432 (2015).

    Article  CAS  Google Scholar 

  45. McNamara, P. J., Bradley, G. A. & Songer, J. G. Targeted mutagenesis of the phospholipase D gene results in decreased virulence of Corynebacterium pseudotuberculosis. Mol. Microbiol. 12, 921–930 (1994).

    Article  CAS  Google Scholar 

  46. Hinnebusch, B. J. et al. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735 (2002).

    Article  CAS  Google Scholar 

  47. Edwards, J. L. & Apicella, M. A. Neisseria gonorrhoeae PLD directly interacts with Akt kinase upon infection of primary, human, cervical epithelial cells. Cell Microbiol. 8, 1253–1271 (2006).

    Article  CAS  Google Scholar 

  48. Dawson, R. M. Phosphorylcholine in rat tissues. Biochem. J. 60, 325–328 (1955).

    Article  CAS  Google Scholar 

  49. Stremmel, W. Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis. Gut 54, 966–971 (2005).

    Article  CAS  Google Scholar 

  50. Karner, M. et al. First multicenter study of modified release phosphatidylcholine ‘LT-02’ in ulcerative colitis: a randomized, placebo-controlled trial in mesalazine-refractory courses. Am. J. Gastroenterol. 109, 1041–1051 (2014).

    Article  CAS  Google Scholar 

  51. Driskell, L. O. et al. Directed mutagenesis of the Rickettsia prowazekii pldg gene encoding phospholipase D. Infect. Immun. 77, 3244–3248 (2009).

    Article  CAS  Google Scholar 

  52. Zhou, M., Diwu, Z., Panchuk-Voloshina, N. & Haugland, R. P. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal. Biochem. 253, 162–168 (1997).

    Article  CAS  Google Scholar 

  53. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  54. Sievers, F. et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  Google Scholar 

  55. Reynolds, S. M., Kall, L., Riffle, M. E., Bilmes, J. A. & Noble, W. S. Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Comput. Biol. 4, e10002123 (2008).

    Article  Google Scholar 

  56. Tsirigos, K. D., Peters, C., Shu, N., Kall, L. & Elofsson, A. The TOPCONS web server for combined membrane protein topology and signal peptide prediction. Nucleic Acids Res. 43, W401–W407 (2015).

    Article  CAS  Google Scholar 

  57. Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    Article  CAS  Google Scholar 

  58. Jiang, F. et al. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe 15, 600–610 (2014).

    Article  CAS  Google Scholar 

  59. Letunic, I. & Bork, P. Interactive tree of life (iTOL)v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Rajakovich, B. Schneider, S. Irwin, N. Braffman and M. McCallum for helpful discussions and comments on the manuscript. The authors also thank K. Romano and F. Rey for helpful discussions, the provision of strains, and experimental design suggestions. The authors acknowledge financial support from the National Science Foundation (IDBR TYPE A DBI-1832846, EAGER MCB-1650086), the Camille Dreyfus Teacher-Scholar Award (TC-15-003), a Packard Fellowship for Science and Engineering (2013-39267), and a Blavatnik Biomedical Accelerator grant.

Author information

Authors and Affiliations

Authors

Contributions

C.L.C. and E.P.B. conceived the study. C.L.C and A.M.d.C. conceived and performed genetic manipulation experiments and analysed the data. C.L.C conceived and performed all biochemical, bioinformatic, and co-culturing experiments and analysed the data. C.L.C. and E.P.B. wrote the manuscript. C.L.C., A.M.d.C. and E.P.B. edited the manuscript.

Corresponding author

Correspondence to Emily P. Balskus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6, Supplementary Figures 1–8.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chittim, C.L., Martínez del Campo, A. & Balskus, E.P. Gut bacterial phospholipase Ds support disease-associated metabolism by generating choline. Nat Microbiol 4, 155–163 (2019). https://doi.org/10.1038/s41564-018-0294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0294-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing