Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX

Abstract

Intraerythrocytic malaria parasites reside within a parasitophorous vacuolar membrane (PVM) generated during host cell invasion1. Erythrocyte remodelling and parasite metabolism require the export of effector proteins and transport of small molecules across this barrier between the parasite surface and host cell cytosol2,3. Protein export across the PVM is accomplished by the Plasmodium translocon of exported proteins (PTEX) consisting of three core proteins, the AAA+ ATPase HSP101 and two additional proteins known as PTEX150 and EXP24. Inactivation of HSP101 and PTEX150 arrests protein export across the PVM5,6, but the contribution of EXP2 to parasite biology is not well understood7. A nutrient permeable channel in the PVM has also been characterized electrophysiologically, but its molecular identity is unknown8,9. Here, using regulated gene expression, mutagenesis and cell-attached patch-clamp measurements, we show that EXP2, the putative membrane-spanning channel of PTEX4,10,11,12,13,14, serves dual roles as a protein-conducting channel in the context of PTEX and as a channel able to facilitate nutrient passage across the PVM independent of HSP101. Our data suggest a dual functionality for a channel operating in its endogenous context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EXP2 is essential for blood stage survival and protein export.
Fig. 2: EXP2 expression differs from other PTEX components.
Fig. 3: PVM channel characteristics and correlation with EXP2 levels.
Fig. 4: Altered voltage response of the PVM channel in EXP2apt::∆234–287 parasites.

Similar content being viewed by others

References

  1. Lingelbach, K. & Joiner, K. A. The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. J. Cell Sci. 111, 1467–1475 (1998).

    CAS  PubMed  Google Scholar 

  2. Desai, S. A. Ion and nutrient uptake by malaria parasite-infected erythrocytes. Cell. Microbiol. 14, 1003–1009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sherling, E. S. & van Ooij, C. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes. FEMS Microbiol. Rev. 40, 701–721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Koning-Ward, T. F. et al. A newly discovered protein export machine in malaria parasites. Nature 459, 945–949 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beck, J. R., Muralidharan, V., Oksman, A. & Goldberg, D. E. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 511, 592–595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elsworth, B. et al. PTEX is an essential nexus for protein export in malaria parasites. Nature 511, 587–591 (2014).

    Article  CAS  Google Scholar 

  7. Kalanon, M. et al. The Plasmodium translocon of exported proteins component EXP2 is critical for establishing a patent malaria infection in mice. Cell. Microbiol. 18, 399–412 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Desai, S. A., Krogstad, D. J. & McCleskey, E. W. A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature 362, 643–646 (1993).

    Article  CAS  Google Scholar 

  9. Desai, S. A. & Rosenberg, R. L. Pore size of the malaria parasite’s nutrient channel. Proc. Natl Acad. Sci. USA 94, 2045–2049 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, D. et al. Characterization of membrane proteins exported from Plasmodium falciparum into the host erythrocyte. Parasitology 109, 1–9 (1994).

    Article  CAS  Google Scholar 

  11. Bullen, H. E. et al. Biosynthesis, localization, and macromolecular arrangement of the Plasmodium falciparum translocon of exported proteins (PTEX). J. Biol. Chem. 287, 7871–7884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hakamada, K., Watanabe, H., Kawano, R., Noguchi, K. & Yohda, M. Expression and characterization of the Plasmodium translocon of the exported proteins component EXP2. Biochem. Biophys. Res. Comm. 482, 700–705 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Gold, D. A. et al. The Toxoplasma dense granule proteins GRA17 and GRA23 mediate the movement of small molecules between the host and the parasitophorous vacuole. Cell Host Microbe 17, 642–652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mesen-Ramirez, P. et al. Stable translocation intermediates jam global protein export in Plasmodium falciparum parasites and link the PTEX component EXP2 with translocation activity. PLoS Pathog. 12, e1005618 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ganesan, S. M., Falla, A., Goldfless, S. J., Nasamu, A. S. & Niles, J. C. Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites. Nat. Commun. 7, 10727 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nasamu, A. S. et al. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science 358, 518–522 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Glushakova, S. et al. Hemoglobinopathic erythrocytes affect the intraerythrocytic multiplication of Plasmodium falciparum in vitro. J. Infect. Dis. 210, 1100–1109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldberg, D. E. & Cowman, A. F. Moving in and renovating: exporting proteins from Plasmodium into host erythrocytes. Nat. Rev. Microbiol. 8, 617–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Kulzer, S., Petersen, W., Baser, A., Mandel, K. & Przyborski, J. M. Use of self-assembling GFP to determine protein topology and compartmentalisation in the Plasmodium falciparum-infected erythrocyte. Mol. Biochem. Parasitol. 187, 87–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Otto, T. D. et al. New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-seq. Mol. Microbiol. 76, 12–24 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boddey, J. A. & Cowman, A. F. Plasmodium nesting: remaking the erythrocyte from the inside out. Annu. Rev. Microbiol. 67, 243–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Schwab, J. C., Beckers, C. J. & Joiner, K. A. The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proc. Natl Acad. Sci. USA 91, 509–513 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Charpian, S. & Przyborski, J. M. Protein transport across the parasitophorous vacuole of Plasmodium falciparum: into the great wide open. Traffic 9, 157–165 (2008).

    CAS  PubMed  Google Scholar 

  24. Glushakova, S. et al. Exploitation of a newly-identified entry pathway into the malaria parasite-infected erythrocyte to inhibit parasite egress. Sci. Rep. 7, 12250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ito, D., Schureck, M. A. & Desai, S. A. An essential dual-function complex mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria parasites. eLife 6, e23485 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Garten, M. et al. Whole-GUV patch-clamping. Proc. Natl Acad. Sci. USA 114, 328–333 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Levadny, V., Aguilella, V. M. & Belaya, M. Access resistance of a single conducting membrane channel. Biochim. Biophys. Acta 1368, 338–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Hyun, C., Rollings, R. & Li, J. Probing access resistance of solid-state nanopores with a scanning probe microscope tip. Small 8, 385–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Ho, C.-M. et al. Malaria parasite translocon structure and mechanism of effector export. Nature https://doi.org/10.1038/s41586-018-0469-4 (2018).

  30. Klemba, M., Beatty, W., Gluzman, I. & Goldberg, D. E. Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum. J. Cell Biol. 164, 47–56 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spillman, N. J., Beck, J. R., Ganesan, S. M., Niles, J. C. & Goldberg, D. E. The chaperonin TRiC forms an oligomeric complex in the malaria parasite cytosol. Cell. Microbiol. 19, e12719 (2017).

    Article  CAS  Google Scholar 

  32. Ganesan, S. M. et al. Yeast dihydroorotate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection. Mol. Biochem. Parasitol. 177, 29–34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adjalley, S. H. et al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc. Natl Acad. Sci. USA 108, E1214–E1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Muralidharan, V., Oksman, A., Pal, P., Lindquist, S. & Goldberg, D. E. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat. Commun. 3, 1310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nkrumah, L. J. et al. Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nat. Methods 3, 615–621 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hall, R. et al. Antigens of the erythrocytes stages of the human malaria parasite Plasmodium falciparum detected by monoclonal antibodies. Mol. Biochem. Parasitol. 7, 247–265 (1983).

    Article  CAS  PubMed  Google Scholar 

  37. Rock, E. P. et al. Comparative analysis of the Plasmodium falciparum histidine-rich proteins HRP-I, HRP-II and HRP-III in malaria parasites of diverse origin. Parasitology 95, 209–227 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Blisnick, T. et al. Pfsbp1, a Maurer’s cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol. Biochem. Parasitol. 111, 107–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Guggisberg, A. M. et al. A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in malaria parasites. Nat. Commun. 5, 4467 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Glushakova, S., Yin, D., Li, T. & Zimmerberg, J. Membrane transformation during malaria parasite release from human red blood cells. Curr. Biol. 15, 1645–1650 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Edelstein, A. D. et al. Advanced methods of microscope control using muManager software. J. Biol. Methods 1, e10 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fisher, R. A. On the interpretation of χ2 from contingency tables, and the calculation of P. J. R. Stat. Soc. 85, 87–94 (1922).

    Article  Google Scholar 

  44. Wilson, E. B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22, 209–212 (1927).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HL133453 to J.R.B. and AI47798 to D.E.G. and by the Division of Intramural Research of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health. We thank S. Glushakova for creating and applying the parasite liberation technique, for performing the IMF experiment and for many helpful conversations throughout the course of this project. We thank J. McBride, D. Cavanagh and EMRR for the EXP2 antibody, D. Taylor for HRP2 antibody, C. Braun-Breton for SBP1 antibody, W. Beatty for assistance with electron microscopy, P. Gurnev for the buffer conductivity measurement, P. S. Blank for helpful suggestions for the statistical analysis of the patch-clamp data and B. Vaupel for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.G., J.Z., D.E.G. and J.R.B. conceived and designed experiments. M.G. and J.R.B. performed the experiments. J.R.B. generated and analysed the parasite strains. M.G. performed patch-clamp analysis. A.S.N. generated the pEXP2apt plasmid. J.C.N. contributed reagents. M.G., J.Z., D.E.G. and J.R.B. analysed the data and wrote the manuscript. All authors discussed and edited the manuscript.

Corresponding authors

Correspondence to Joshua Zimmerberg or Daniel E. Goldberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garten, M., Nasamu, A.S., Niles, J.C. et al. EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX. Nat Microbiol 3, 1090–1098 (2018). https://doi.org/10.1038/s41564-018-0222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0222-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing