Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ground water and climate change

Subjects

This article has been updated

Abstract

As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Global map of anthropogenic groundwater recharge rates in areas with substantial irrigation by surface water.

Similar content being viewed by others

Change history

  • 03 December 2012

    In the version of this Review Article originally published online, in Table 1, 'Flux-based method' and 'Volume-based method' should have cited refs 91 and 92, respectively. This error has now been corrected in all versions of the Review Article.

References

  1. Giordano, M. Global groundwater? Issues and solutions. Annu. Rev. Env. Resour. 34, 153–178 (2009).

    Article  Google Scholar 

  2. Döll, P. et al. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 59–60, 143–156 (2012).

    Article  Google Scholar 

  3. Arnell, N. W. et al. in Climate Change 2001: Impacts, Adaptation and Vulnerability (eds McCarthy, J. J. et al.) Ch. 4 (Cambridge Univ. Press, 2003).

    Google Scholar 

  4. Kundzewicz, Z. W. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) Ch. 3 (Cambridge Univ. Press, 2007).

    Google Scholar 

  5. Dragoni, W. & Sukhija, B. S. Climate Change and Groundwater (Geological Society, 2008).

    Google Scholar 

  6. Taniguchi, M. & Holman, I. P. Groundwater Response to Changing Climate (CRC, 2010).

    Book  Google Scholar 

  7. Treidel, H., Martin-Bordes, J. L. & Gurdak, J. J. Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations (Taylor & Francis, 2012).

    Google Scholar 

  8. Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).

    Article  Google Scholar 

  9. Struckmeier, W. et al. Groundwater Resources of the World (1:25,000,000) (BGR & UNESCO World-wide Hydrogeological Mapping and Assessment Programme, 2008).

    Google Scholar 

  10. De Vries, J. J., Selaolo, E. T & Beekman, H. E. Groundwater recharge in the Kalahari, with reference to paleo-hydrologic conditions. J. Hydrol. 238, 110–123 (2000).

    Article  CAS  Google Scholar 

  11. Lehmann, B. E. et al. A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia. Earth Planet. Sci. Lett. 211, 237–250 (2003).

    Article  CAS  Google Scholar 

  12. Edmunds, W. M. et al. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators. Appl. Geochem. 18, 805–822 (2003).

    Article  CAS  Google Scholar 

  13. McMahon, P. B., Böhlke, J. K. & Christenson, S. C. Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Appl. Geochem. 19, 1655–1686 (2004).

    Article  CAS  Google Scholar 

  14. Scanlon, B. R. et al. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Proc. 20, 3335–3370 (2006).

    Article  CAS  Google Scholar 

  15. Foster, S. & Loucks, D. P. Non-Renewable Groundwater Resources — A Guidebook on Socially Sustainable Management for Water Policy Makers (UNESCO IHP, 2006).

    Google Scholar 

  16. Gleick, P. H. Roadmap for sustainable water resources in southwestern North America. Proc. Nat Acad. Sci. USA 107, 21300–21305 (2010).

    Article  Google Scholar 

  17. Döll, P. & Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 12, 863–885 (2008).

    Article  Google Scholar 

  18. Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).

    Article  Google Scholar 

  19. Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett. 4, 035006 (2009).

    Article  Google Scholar 

  20. Favreau, G. et al. Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review. Wat. Resour. Res. 45, W00A16 (2009).

    Article  Google Scholar 

  21. Taylor, R. G. et al. Dependence of groundwater resources on intense seasonal rainfall: evidence from East Africa. Nature Clim. Change http://dx.doi.org/10/1038/nclimate1731 (2012).

  22. Gurdak, J. J., McMahon, P. B. & Bruce, B. W. in Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations (eds Treidel, H., Martin-Bordes, J. L. & Gurdak, J. J.) 145–168 (CRC, 2012).

    Google Scholar 

  23. Leblanc, M. J. et al. Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Wat. Resour. Res. 45, W04408 (2009).

    Article  Google Scholar 

  24. Owor, M., Taylor, R. G., Tindimugaya, C. & Mwesigwa, D. Rainfall intensity and groundwater recharge: Evidence from the Upper Nile Basin. Environ. Res. Lett. 4, 035009 (2009).

    Article  Google Scholar 

  25. Small, E. E. Climatic controls on diffuse groundwater recharge in semiarid environments of the southwestern United States. Wat. Resour. Res. 41, W04012 (2005).

    Article  Google Scholar 

  26. Pool, D. R. Variations in climate and ephemeral channel recharge in southeastern Arizona, United States. Wat. Resour. Res. 41, W11403 (2005).

    Article  Google Scholar 

  27. Taylor, R. G. et al. in Groundwater and Climate in Africa (eds Taylor, R. et al.) 15–19 (IAHS, 2009).

    Google Scholar 

  28. Scanlon, B. R. et al. Ecological controls on water-cycle response to climate variability in deserts. Proc. Nat. Acad. Sci. USA 102, 6033–6038 (2005).

    Article  CAS  Google Scholar 

  29. Tague, C. & Grant, G. E. Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions. Wat. Resour. Res. 45, W07421 (2009).

    Article  Google Scholar 

  30. Sultana, Z. & Coulibaly, P. Distributed modelling of future changes in hydrological processes of Spencer Creek watershed. Hydrol. Proc. 25, 1254–1270 (2010).

    Article  Google Scholar 

  31. Allen, D. M., Whitfield, P. H. & Werner, A. Groundwater level responses in temperate mountainous terrain: Regime classification, and linkages to climate and streamflow. Hydrol. Proc. 24, 3392–3412 (2010).

    Article  Google Scholar 

  32. Gremaud, V. et al. Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps. Hydrogeol. J. 17, 1833–1848 (2009).

    Article  CAS  Google Scholar 

  33. Immerzeel, W. W. et al. Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change 110, 721–736 (2012).

    Article  Google Scholar 

  34. Michel, F. A. & van Everdingen, R. O. Changes in hydrogeologic regimes in permafrost regions due to climatic change. Permafrost Periglac. 5, 191–195 (1994).

    Article  Google Scholar 

  35. Okkonen, J. & Kløve, B. A sequential modelling approach to assess groundwater-surface water resources in a snow dominated region of Finland. J. Hydrol. 411, 91–107 (2011).

    Article  Google Scholar 

  36. Leblanc, M. et al. Land clearance and hydrological change in the Sahel. Glob. Planet. Change 61, 135–150 (2008).

    Article  Google Scholar 

  37. Cartwright, I., Weaver, T. R., Stone, D. & Reid, M. Constraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: Applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia. J. Hydrol. 332, 69–92 (2007).

    Article  Google Scholar 

  38. Leblanc, M., Tweed, S., van Dijk, A. & Timbal, B. A review of historic and future hydrological changes in the Murray-Darling Basin. Glob. Planet. Change 80–81, 226–246 (2012).

    Article  Google Scholar 

  39. Scanlon, B. R. et al. Effects of irrigated agroecosystems. 2. Quality of soil water and groundwater in the Southern High Plains, Texas. Wat. Resour. Res. 46, W09538 (2010).

    Google Scholar 

  40. Chen J. Y. Holistic assessment of groundwater resources and regional environmental problems in the North China Plain. Environ. Earth Sci. 61, 1037–1047 (2010).

    Article  CAS  Google Scholar 

  41. Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    Article  CAS  Google Scholar 

  42. Longuevergne, L., Scanlon, B. R. & Wilson, C. R. GRACE hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Wat. Resour. Res. 46, W11517 (2010).

    Article  Google Scholar 

  43. Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Nat. Acad. Sci. USA 109, 9320–9325 (2012).

    Article  Google Scholar 

  44. Foster, S. et al. The Guarani Aquifer Initiative — Towards Realistic Groundwater Management in a Transboundary Context (World Bank, 2009).

    Google Scholar 

  45. Shamsudduha, M., Taylor, R. G. & Longuevergne, L. Monitoring groundwater storage changes in the Bengal Basin: Validation of GRACE measurements. Wat. Resour. Res. 48, W02508 (2012).

    Article  Google Scholar 

  46. Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California's Central Valley. Geophys. Res. Lett. 38, L03403 (2011).

    Article  Google Scholar 

  47. Scanlon, B. R., Longuevergne, L. & Long, D. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, US. Wat. Resour. Res. 48, W04520 (2012).

    Article  Google Scholar 

  48. Faunt, C. C. Groundwater Availability of the Central Valley Aquifer, California (US Geological Survey, 2009).

    Book  Google Scholar 

  49. Van Geen, A. et al. Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal basin. Environ. Sci. Technol. 42, 2283–2288 (2008).

    Article  CAS  Google Scholar 

  50. Shamsudduha, M. Groundwater dynamics and arsenic mobilisation in Bangladesh: A national-scale characterisation PhD thesis, Univ. College London (2011).

    Google Scholar 

  51. Bates, B. C., Kundzewicz, Z. W., Wu, S. & Palutikof, J. P. Climate Change and Water Technical Paper of the Intergovernmental Panel on Climate Change VI (IPCC, 2008).

    Google Scholar 

  52. Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

    Article  CAS  Google Scholar 

  53. IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (IPCC 2011); available at http://ipcc-wg2.gov/SREX

  54. Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Climatic Change 54, 269–293 (2002).

    Article  Google Scholar 

  55. Falloon, P. & Betts, R. Climate impacts on European agriculture and water management in the context of adaptation and mitigation — the importance of an integrated approach. Sci. Total Environ. 408, 5667–5687 (2010).

    Article  CAS  Google Scholar 

  56. Hanson, R. T. et al. A method for physically based model analysis of conjunctive use in response to potential climate changes. Wat. Resour. Res. 48, W00L08 (2012).

    Article  Google Scholar 

  57. Crosbie, R. et al. An assessment of climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of GCMs. Climatic Change http://dx.doi.org/10.1007/s10584-012-0558-6 (2012).

  58. Hiscock, K., Sparkes, R. & Hodgson, A. in Climate Change Effects of Groundwater Resources: A Global Synthesis of Findings and Recommendations (eds Treidel, H., Martin-Bordes, J. L. & Gurdak, J. J.) 351–365 (CRC, 2011).

    Google Scholar 

  59. Taylor, R. G., Koussis, A. & Tindimugaya, C. Groundwater and climate in Africa: A review. Hydrol. Sci. J. 54, 655–664 (2009).

    Article  Google Scholar 

  60. Jackson C. R., Meister, R. & Prudhomme, C. Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. J. Hydrol. 399, 12–28 (2011).

    Article  Google Scholar 

  61. Allen, D. M. et al. Variability in simulated recharge using different GCMs. Wat. Resour. Res. 46, W00F03 (2010).

    Article  Google Scholar 

  62. Crosbie, R. S. et al. Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophys. Res. Lett. 38, L11406 (2011)

    Article  Google Scholar 

  63. Holman I. P., Tascone D. & Hess, T. M. A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia UK: Implications for groundwater resource management. Hydrogeol. J. 17, 1629–1641 (2009).

    Article  Google Scholar 

  64. Stoll, S. et al. Analysis of the impact of climate change on groundwater related hydrological fluxes: A multi-model approach including different downscaling methods. Hydrol. Earth Syst. Sci. 15, 21–38 (2011).

    Article  Google Scholar 

  65. Mileham, L. et al. Climate change impacts on the terrestrial hydrology of a humid, equatorial catchment: Sensitivity of projections to rainfall intensity. Hydrol. Sci. J. 54, 727–738 (2009).

    Article  Google Scholar 

  66. Crosbie, R., McCallum, J., Walker, G. & Chiew, F. Episodic recharge and climate change in the Murray-Darling Basin, Australia. Hydrogeol. J. 20, 245–261 (2012).

    Article  Google Scholar 

  67. Cao, L. et al. Importance of carbon dioxide physiological forcing to future climate change. Proc. Nat. Acad. Sci USA. 107, 9513–9518 (2010).

    Article  Google Scholar 

  68. McCallum, J. L. et al. Impacts of climate change on groundwater in Australia: A sensitivity analysis of recharge. Hydrogeol. J. 18, 1625–1638 (2010).

    Article  CAS  Google Scholar 

  69. Ozdogan, M., Rodell, M., Beaudoing, H. K. & Toll, D. Simulating the effects of irrigation over the US in a land surface model based on satellite derived agricultural data. J. Hydrometeor. 11, 171–184 (2010).

    Article  Google Scholar 

  70. DeAngelis, A. et al. Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res. 115, D15115 (2010).

    Article  Google Scholar 

  71. Kustu, D., Fan, Y. & Rodell, M. Possible link between irrigation in the US High Plains and increased summer streamflow in the Midwest. Wat. Resour. Res. 47, W03522 (2011).

    Article  Google Scholar 

  72. Lo, M.-H. & Famiglietti, J. S. Irrigation in California's Central Valley strengthens the southwestern US monsoon. Am. Geophys. Union, Fall Meeting H24E-06 (2011); available at http://adsabs.harvard.edu//abs/2011AGUFM.H24E..06L

  73. Douglas, E. M. et al. Simulating changes in land-atmosphere interactions from expanding agriculture and irrigation in India and the potential impacts on the Indian monsoon. Glob. Planet. Change 67, 117–128 (2009).

    Article  Google Scholar 

  74. Miguez-Macho G. & Fan, Y. The role of groundwater in the Amazon water cycle. 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res. 117, D1511 (2012).

    Google Scholar 

  75. Maxwell, R. M. & Miller, N. L. Development of a coupled land surface and groundwater model. J. Hydrometeorol. 6, 233–247 (2005).

    Article  Google Scholar 

  76. Kollet, S. J. & Maxwell, R. M. Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Wat. Resour. Res. 44, W02402 (2008).

    Article  Google Scholar 

  77. Ferguson, I. M. & Maxwell, R. M. The role of groundwater in watershed response and land surface feedbacks under climate change. Wat. Resour. Res. 46, W00F02 (2010).

    Article  Google Scholar 

  78. Maxwell, R. M., Chow, F. K. & Kollet, S. J. The groundwater–land-surface–atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Adv. Wat. Resour. 30, 2447–2466 (2007).

    Article  Google Scholar 

  79. Maxwell, R. M. et al. Development of a coupled groundwater-atmospheric model. Mon. Weather Rev. 139, 96–116 (2011).

    Article  Google Scholar 

  80. Fan, Y. & Miguez-Macho, G. A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim. Dyn. 37, 253–278 (2011).

    Article  Google Scholar 

  81. Toth, J. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. 68, 4795–4812 (1963).

    Article  Google Scholar 

  82. Schaller, M. & Fan, Y. River basins as groundwater exporters and importers: Implications for water cycle and climate modeling. J. Geophys. Res. 114, D04103 (2009).

    Google Scholar 

  83. Raymond, P. A. et al. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451, 449–452 (2011).

    Article  CAS  Google Scholar 

  84. Small, C. & Nicholls, R. J. A global analysis of human settlement in coastal zones. J. Coast. Res. 19, 584–599 (2003).

    Google Scholar 

  85. Bindoff, N. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S et al.) 385–432 (Cambridge Univ. Press, 2007).

    Google Scholar 

  86. Oude Essink, G. H. P., van Baaren, E. S. & de Louw, P. G. B. Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands. Wat. Resour. Res. 46, W00F04 (2010).

    Article  Google Scholar 

  87. Ferguson, G. & Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nature Clim. Change 2, 342–345 (2012).

    Article  Google Scholar 

  88. Yakirevich, A. et al. Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer. Hydrogeol. J. 6, 549–559 (1998).

    Article  Google Scholar 

  89. Taniguchi M. Groundwater and Subsurface Environments — Human Impacts in Asian Coastal Cities (Springer, 2011).

    Book  Google Scholar 

  90. IPCC Climate Change 2007: The Physical Science Basis (Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  91. Wada, Y. et al. Past and future contribution of global groundwater depletion to sea-level rise, Geophys. Res. Lett. 39, L09402 (2012).

    Article  Google Scholar 

  92. Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. 38, L17401 (2011).

    Article  Google Scholar 

  93. Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nature Geosci. 5, 389–392 (20 May 2012).

    Article  CAS  Google Scholar 

  94. Hussain, I. & Hanjra, M. A. Irrigation and poverty alleviation: Review of the empirical evidence. Irrig. Drain. 53, 1–15 (2004).

    Article  Google Scholar 

  95. Vrba, J. & Verhagen, B. T. Groundwater for Emergency Situations: A Methodological Guide (UNESCO IHP, 2011).

    Google Scholar 

  96. Holman, I. P., Allen, D. M., Cuthbert, M. O. & Goderniaux, P. Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol. J. 20, 1–4 (2012).

    Article  Google Scholar 

  97. Gleeson, T. et al. Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively. Ground Water 50, 19–26 (2012).

    Article  CAS  Google Scholar 

  98. Sukhija, B. S. Adaptation to climate change: Strategies for sustaining groundwater resources during droughts. Geol. Soc. Sp. 288, 169–181 (2008).

    Article  Google Scholar 

  99. Shamsudduha, M., Taylor, R. G., Ahmed, K. M. & Zahid, A. The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: Evidence from Bangladesh. Hydrogeol. J. 19, 901–916 (2011).

    Article  Google Scholar 

  100. MacDonald, A. et al. Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 7, 024009 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support provided by the International Association of Hydrogeologists' Commission on Groundwater & Climate Change and the UNESCO IHP GRAPHIC Programme (http://www.gwclim.org) in coordinating this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, R., Scanlon, B., Döll, P. et al. Ground water and climate change. Nature Clim Change 3, 322–329 (2013). https://doi.org/10.1038/nclimate1744

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing