Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distributing a metabolic pathway among a microbial consortium enhances production of natural products

Abstract

Metabolic engineering of microorganisms such as Escherichia coli and Saccharomyces cerevisiae to produce high-value natural metabolites is often done through functional reconstitution of long metabolic pathways. Problems arise when parts of pathways require specialized environments or compartments for optimal function. Here we solve this problem through co-culture of engineered organisms, each of which contains the part of the pathway that it is best suited to hosting. In one example, we divided the synthetic pathway for the acetylated diol paclitaxel precursor into two modules, expressed in either S. cerevisiae or E. coli, neither of which can produce the paclitaxel precursor on their own. Stable co-culture in the same bioreactor was achieved by designing a mutualistic relationship between the two species in which a metabolic intermediate produced by E. coli was used and functionalized by yeast. This synthetic consortium produced 33 mg/L oxygenated taxanes, including a monoacetylated dioxygenated taxane. The same method was also used to produce tanshinone precursors and functionalized sesquiterpenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A competitive E. coliS. cerevisiae consortium for production of oxygenated taxanes.
Figure 2: A mutualistic E. coliS. cerevisiae consortium for production of oxygenated taxanes.
Figure 3: Optimizing the yeast growth and engineering the yeast promoters improved production of the oxygenated taxanes.
Figure 4: Inactivating oxidative phosphorylation in E. coli improved yeast growth and production of oxygenated taxanes.
Figure 5: Production of a monoacetylated dioxygenated taxane by the E. coliS. cerevisiae co-culture.
Figure 6: Use of the E. coliS. cerevisiae co-culture for production of other oxygenated isoprenoids.

Similar content being viewed by others

References

  1. Ajikumar, P.K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    Article  CAS  Google Scholar 

  2. Paddon, C.J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    Article  CAS  Google Scholar 

  3. Alonso-Gutierrez, J. et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab. Eng. 19, 33–41 (2013).

    Article  CAS  Google Scholar 

  4. Ajikumar, P.K. et al. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol. Pharm. 5, 167–190 (2008).

    Article  CAS  Google Scholar 

  5. Hefferon, K. Plant-derived pharmaceuticals for the developing world. Biotechnol. J. 8, 1193–1202 (2013).

    CAS  PubMed  Google Scholar 

  6. Melnik, S. & Stoger, E. Green factories for biopharmaceuticals. Curr. Med. Chem. 20, 1038–1046 (2013).

    CAS  PubMed  Google Scholar 

  7. Chang, M.C., Eachus, R.A., Trieu, W., Ro, D.K. & Keasling, J.D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3, 274–277 (2007).

    Article  CAS  Google Scholar 

  8. Agapakis, C.M., Boyle, P.M. & Silver, P.A. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat. Chem. Biol. 8, 527–535 (2012).

    Article  CAS  Google Scholar 

  9. Smid, E.J. & Lacroix, C. Microbe-microbe interactions in mixed culture food fermentations. Curr. Opin. Biotechnol. 24, 148–154 (2013).

    Article  CAS  Google Scholar 

  10. Fredrickson, A.G. & Stephanopoulos, G. Microbial competition. Science 213, 972–979 (1981).

    Article  CAS  Google Scholar 

  11. Davison, B.H. & Stephanopoulos, G. Effect of pH oscillations on a competing mixed culture. Biotechnol. Bioeng. 28, 1127–1137 (1986).

    Article  CAS  Google Scholar 

  12. Bayer, T.S. et al. Synthesis of methyl halides from biomass using engineered microbes. J. Am. Chem. Soc. 131, 6508–6515 (2009).

    Article  CAS  Google Scholar 

  13. Minty, J.J. et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl. Acad. Sci. USA 110, 14592–14597 (2013).

    Article  CAS  Google Scholar 

  14. Xia, T., Eiteman, M.A. & Altman, E. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microb. Cell Fact. 11, 77 (2012).

    Article  CAS  Google Scholar 

  15. Guerra-Bubb, J., Croteau, R. & Williams, R.M. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat. Prod. Rep. 29, 683–696 (2012).

    Article  CAS  Google Scholar 

  16. Jennewein, S., Long, R.M., Williams, R.M. & Croteau, R. Cytochrome p450 taxadiene 5alpha-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis. Chem. Biol. 11, 379–387 (2004).

    Article  CAS  Google Scholar 

  17. Hefner, J. et al. Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5alpha-ol: the first oxygenation step in taxol biosynthesis. Chem. Biol. 3, 479–489 (1996).

    Article  CAS  Google Scholar 

  18. Nowak, M.A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).

    Article  CAS  Google Scholar 

  19. Eiteman, M.A. & Altman, E. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24, 530–536 (2006).

    Article  CAS  Google Scholar 

  20. Sun, J. et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol. Bioeng. 109, 2082–2092 (2012).

    Article  CAS  Google Scholar 

  21. Blazeck, J., Garg, R., Reed, B. & Alper, H.S. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol. Bioeng. 109, 2884–2895 (2012).

    Article  CAS  Google Scholar 

  22. De Virgilio, C. et al. Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 8, 1043–1051 (1992).

    Article  CAS  Google Scholar 

  23. Kratzer, S. & Schuller, H.J. Transcriptional control of the yeast acetyl-CoA synthetase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6. Mol. Microbiol. 26, 631–641 (1997).

    Article  CAS  Google Scholar 

  24. Causey, T.B., Zhou, S., Shanmugam, K.T. & Ingram, L.O. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc. Natl. Acad. Sci. USA 100, 825–832 (2003).

    Article  CAS  Google Scholar 

  25. Walker, K., Schoendorf, A. & Croteau, R. Molecular cloning of a taxa-4(20),11(12)-dien-5alpha-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch. Biochem. Biophys. 374, 371–380 (2000).

    Article  CAS  Google Scholar 

  26. Schoendorf, A., Rithner, C.D., Williams, R.M. & Croteau, R.B. Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast. Proc. Natl. Acad. Sci. USA 98, 1501–1506 (2001).

    Article  CAS  Google Scholar 

  27. Wheeler, A.L. et al. Taxol biosynthesis: differential transformations of taxadien-5 alpha-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells. Arch. Biochem. Biophys. 390, 265–278 (2001).

    Article  CAS  Google Scholar 

  28. Guo, J. et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc. Natl. Acad. Sci. USA 110, 12108–12113 (2013).

    Article  CAS  Google Scholar 

  29. Zhou, Y.J. et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J. Am. Chem. Soc. 134, 3234–3241 (2012).

    Article  CAS  Google Scholar 

  30. Hom, E.F. & Murray, A.W. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 345, 94–98 (2014).

    Article  CAS  Google Scholar 

  31. Pillai, V.C., Snyder, R.O., Gumaste, U., Thekkumkara, T.J. & Mehvar, R. Effects of transient overexpression or knockdown of cytochrome P450 reductase on reactive oxygen species generation and hypoxia reoxygenation injury in liver cells. Clin. Exp. Pharmacol. Physiol. 38, 846–853 (2011).

    Article  CAS  Google Scholar 

  32. Reed, J.R., Cawley, G.F. & Backes, W.L. Inhibition of cytochrome P450 1A2-mediated metabolism and production of reactive oxygen species by heme oxygenase-1 in rat liver microsomes. Drug Metab. Lett. 5, 6–16 (2011).

    Article  CAS  Google Scholar 

  33. Artsatbanov, V.Y. et al. Influence of oxidative and nitrosative stress on accumulation of diphosphate intermediates of the non-mevalonate pathway of isoprenoid biosynthesis in corynebacteria and mycobacteria. Biochemistry 77, 362–371 (2012).

    CAS  PubMed  Google Scholar 

  34. Rontein, D. et al. CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5),11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J. Biol. Chem. 283, 6067–6075 (2008).

    Article  CAS  Google Scholar 

  35. Xue, J. & Ahring, B.K. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl. Environ. Microbiol. 77, 2399–2405 (2011).

    Article  CAS  Google Scholar 

  36. Zhou, K., Zou, R., Zhang, C., Stephanopoulos, G. & Too, H.P. Optimization of amorphadiene synthesis in Bacillus subtilis via transcriptional, translational, and media modulation. Biotechnol. Bioeng. 110, 2556–2561 (2013).

    Article  CAS  Google Scholar 

  37. Doshi, R., Nguyen, T. & Chang, G. Transporter-mediated biofuel secretion. Proc. Natl. Acad. Sci. USA 110, 7642–7647 (2013).

    Article  CAS  Google Scholar 

  38. Santos, C.N., Xiao, W. & Stephanopoulos, G. Rational, combinatorial, and genomic approaches for engineering l-tyrosine production in Escherichia coli. Proc. Natl. Acad. Sci. USA 109, 13538–13543 (2012).

    Article  CAS  Google Scholar 

  39. Minami, H. et al. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl. Acad. Sci. USA 105, 7393–7398 (2008).

    Article  CAS  Google Scholar 

  40. Choi, Y.J. & Lee, S.Y. Microbial production of short-chain alkanes. Nature 502, 571–574 (2013).

    Article  CAS  Google Scholar 

  41. Leber, C. & Da Silva, N.A. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol. Bioeng. 111, 347–358 (2014).

    Article  CAS  Google Scholar 

  42. Craft, D.L., Madduri, K.M., Eshoo, M. & Wilson, C.R. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to alpha,omega-dicarboxylic acids. Appl. Environ. Microbiol. 69, 5983–5991 (2003).

    Article  CAS  Google Scholar 

  43. Zou, R., Zhou, K., Stephanopoulos, G. & Too, H.P. Combinatorial engineering of 1-deoxy-d-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIVA) method. PLoS ONE 8, e79557 (2013).

    Article  CAS  Google Scholar 

  44. Flagfeldt, D.B., Siewers, V., Huang, L. & Nielsen, J. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26, 545–551 (2009).

    Article  Google Scholar 

  45. Avalos, J.L., Fink, G.R. & Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31, 335–341 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions and input from A. Ghaderi, F. Lam, H. Zhang, J. Avalos and W. Wang. This work was supported by National Institutes of Health grant 1-R01-GM085323-01A1 and the Singapore MIT Alliance.

Author information

Authors and Affiliations

Authors

Contributions

K.Z. and G.S. conceived the project. K.Z., K.Q., S.E. and G.S. designed the experiments, analyzed the results and wrote the manuscript. K.Z., K.Q. and S.E. did all the experiments.

Corresponding author

Correspondence to Gregory Stephanopoulos.

Ethics declarations

Competing interests

The authors have filed a patent on the co-culture concept.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19 and Supplementary Tables 1–4 (PDF 1669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Qiao, K., Edgar, S. et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33, 377–383 (2015). https://doi.org/10.1038/nbt.3095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3095

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research