Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The effect of spin transport on spin lifetime in nanoscale systems

Abstract

Spintronics use the electron spin as a state variable for information processing and storage1. This requires manipulation of spin ensembles for data encoding, and spin transport for information transfer. Because of the central importance of lifetime for understanding and controlling spins, mechanisms that determine this lifetime in bulk systems have been extensively studied. However, a clear understanding of few-spin systems remains challenging. Here, we report spatially resolved magnetic resonance studies of electron spin ensembles confined to a ‘spin nanowire’ formed by nitrogen ion implantation in diamond. We measure the spin lifetime of the ensemble—that is, its spin autocorrelation time—by monitoring the statistical fluctuations2 of its net moment, which is in thermal equilibrium and has no imposed polarization gradient. We find that the lifetime of the ensemble is dominated by spin transport from the ensemble into the adjacent spin reservoir that is provided by the remainder of the nanowire. This is in striking contrast to conventional spin-lattice relaxation measurements of isolated spin ensembles. Electron spin resonance spectroscopy performed on nanoscale spin ensembles by means of a novel spin manipulation protocol corroborates spin transport in strong field gradients. Our experiments, supported by microscopic Monte Carlo modelling, provide a unique insight into the intrinsic dynamics of pure spin currents needed for nanoscale devices that seek to control spins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MRFM spin wire set-up, schematic of spin dynamics in wire, and spin noise measurements.
Figure 2: Comparison of piOSCAR and iOSCAR resonance protocols.
Figure 3: Hyperfine spectrum measurement for spin wire.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  2. Mamin, H. J. et al. Detection and manipulation of statistical polarization in small spin ensembles. Phys. Rev. Lett. 91, 207604 (2003).

    Article  CAS  Google Scholar 

  3. Bloembergen, N. On the interaction of nuclear spins in a crystalline lattice. Physica 15, 386–426 (1949).

    Article  CAS  Google Scholar 

  4. Abragam, A. The Principles of Nuclear Magnetism: The International Series of Monographs on Physics (Oxford Univ. Press, 1961).

    Google Scholar 

  5. Bloembergen, N., Purcell, E. M. & Pound, R. V. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679–712 (1948).

    Article  CAS  Google Scholar 

  6. Vugmeister, B. E. Spin diffusion and spin-lattice relaxation in paramagnetic crystals. Phys. Status Solidi B 90, 711–718 (1978).

    Article  CAS  Google Scholar 

  7. Zhang, S., Meier, B. H. & Ernst, R. R. Polarization echoes in NMR. Phys. Rev. Lett. 69, 2149–2151 (1992).

    Article  CAS  Google Scholar 

  8. Fong, K. C. et al. Spin lifetime in small ensembles of electron spins measured by magnetic resonance force microscopy. Phys. Rev. B 84, 220405 (2011).

    Article  Google Scholar 

  9. Bloch, F. Nuclear induction. Phys. Rev. 70, 460–474 (1946).

    Article  CAS  Google Scholar 

  10. Sleator, T., Hahn, E. L., Hilbert, C. & Clarke, J. Nuclear-spin noise. Phys. Rev. Lett. 55, 1742–1745 (1985).

    Article  CAS  Google Scholar 

  11. Vinante, A. et al. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures. Nature Commun. 2, 572 (2011).

    Article  CAS  Google Scholar 

  12. Eberhardt, K. W. et al. Direct observation of nuclear spin diffusion in real space. Phys. Rev. Lett. 99, 227603 (2007).

    Article  Google Scholar 

  13. Müller, G. M. et al. Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics. Phys. Rev. Lett. 101, 206601 (2008).

    Article  Google Scholar 

  14. Rugar, D. et al. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  15. Peddibhotla, P. et al. Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire. Nature Phys. 9, 631–635 (2013).

    Article  CAS  Google Scholar 

  16. Seitaridou, E. et al. Measuring flux distributions for diffusion in the small-numbers limit. J. Phys. Chem. B 111, 2288–2292 (2007).

    Article  CAS  Google Scholar 

  17. Takahashi, S. et al. Quenching spin decoherence in diamond through spin bath polarization. Phys. Rev. Lett. 101, 047601 (2008).

    Article  Google Scholar 

  18. Chui, B. W. et al. In Proc. 12th Int. Conf. Transducers, Solid-State Sensors, Actuators and Microsystems 2, 1120–1123 (IEEE, 2003).

    Article  CAS  Google Scholar 

  19. Jedema, F. J. et al. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

    Article  CAS  Google Scholar 

  20. Budakian, R., Mamin, H. J. & Rugar, D. Suppression of spin diffusion near a micron-size ferromagnet. Phys. Rev. Lett. 92, 037205 (2004).

    Article  CAS  Google Scholar 

  21. Genack, A. Z. & Redfield, A. G. Theory of nuclear spin diffusion in a spatially varying magnetic field. Phys. Rev. B 12, 78–87 (1975).

    Article  CAS  Google Scholar 

  22. Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nature Mater. 11, 143–147 (2011).

    Article  Google Scholar 

  23. van Oort, E., Stroomer, P. & Glasbeek, M. Low-field optically detected magnetic resonance of a coupled triplet–doublet defect pair in diamond. Phys. Rev. B 42, 8605–8608 (1990).

    Article  CAS  Google Scholar 

  24. Stipe, B. C. et al. Electron spin relaxation near a micron-size ferromagnet. Phys. Rev. Lett. 87, 277602 (2001).

    Article  CAS  Google Scholar 

  25. Brosious, P., Lee, Y., Corbett, J. & Cheng, L. Electron paramagnetic resonance in diamond implanted at various energies and temperatures Phys. Status Solidi A 25, 541–549 (1974).

    Article  CAS  Google Scholar 

  26. Mohrange, J., Beserman, R. & Bourgoin, J. C. Study of defects introduced by ion implantation in diamond. Jpn J. Appl. Phys. 14, 544–548 (1975).

    Article  Google Scholar 

  27. Warren, R., Feldman, D. & Castle, J. Spin-lattice relaxation of F centers in KCl: interacting F centers. Phys. Rev. 136, A1347 (1964).

    Article  Google Scholar 

Download references

Acknowledgements

The research presented in this Letter was supported by the Army Research Office (grant no. W911NF-09-1-0147), the National Science Foundation (NSF, grant no. DMR-0807093), the Center for Emergent Materials (CEM), an NSF-funded MRSEC grant (no. DMR-0820414) and the NanoSystems Laboratory at Ohio State University. The authors thank R. J. Furnstahl for valuable discussions related to this research.

Author information

Authors and Affiliations

Authors

Contributions

M.R.H. and K.C.F. designed and built the experimental probe. M.R.H. conceived the experiments. M.R.H. and J.D.C. performed the experiments. J.D.C. and N.S. performed the simulations. J.D.C., N.S., M.R.H. and D.V.P. analysed the data. C.Z. contributed theoretical analysis. A.J.B., J.D.C., N.S., D.V.P., C.J. and P.C.H. wrote the paper. P.C.H. supervised the project.

Corresponding author

Correspondence to P. Chris Hammel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 7093 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 5162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardellino, J., Scozzaro, N., Herman, M. et al. The effect of spin transport on spin lifetime in nanoscale systems. Nature Nanotech 9, 343–347 (2014). https://doi.org/10.1038/nnano.2014.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing