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We have numerically found periodic collisionless motions of a walking model consisting of linked
rigid objects. Unlike previous designs, this model can walk on level ground at non-infinitesimal speed
with zero energy input. The model avoids collisional losses by using an internal mode of oscillation:
swaying of the upper body coupled to the legs by springs. Appropriate synchronized internal oscil-
lations set the foot-strike collision to zero velocity. The concept might be of use for energy-efficient
robots and may also help to explain aspects of human and animal locomotion efficiency.

I. INTRODUCTION

When an object, robot, or animal traverses level
ground at a constant speed, the essential forces from
gravity and support are orthogonal to the motion. Thus,
the essential energetic cost is zero. For example, zero-
cost locomotion is achieved by sliding on a frictionless
surface or by rolling without slip on a frictional surface.

Can legged transport over level ground be similarly
energy-cost free? Nature and engineers have designed
low friction hinges. Air-friction losses are small for walk-
ing. If one neglects these minor friction losses, is a zero-
energy-cost walking mechanism possible?

Consider walking mechanisms made of frictionlessly-
linked rigid objects (links) subject to gravity, supported
by a frictional level surface, and with possible actuators
and springs at the hinges (joints). If we limit attention to
periodic motions, then the positive work of the actuators
(muscles) is balanced by negative actuator work (e.g.,
eccentric muscle contractions), frictional sliding, and col-
lisions between the feet and the ground. Our central
concern is the collisional loss.

At a collision, energy is lost by a combination of mecha-
nisms (heat at the collision point, dissipation in muscles
and soft tissues, acoustic radiation, etc.). If the rigid-
object model is accurate for all parts before and after
the collision then linear and angular momentum balance
determine the energy lost, regardless of the mechanisms
of dissipation [1]. In particular, energy is necessarily lost
when any non-massless objects stick together with an
abrupt change in velocity. Collision loss is central in pas-
sive dynamic walkers [2, 3] and important in some pow-
ered robots [4]. Collisions seem to be important role in
human and animal locomotion [5, 6]. However, there is
no collisional loss if the new contacts are made with zero
relative velocity between the approaching objects.

It is possible to specify kinematic paths for the links
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of a walking device so that no collisions would occur.
Using a controller and actuators one might achieve that
collisionless gait. Blajer and Schiehlen designed and sim-
ulated such a controlled collisionless walker that had an
asymptotically stable gait [7]. However, the actuators in
such devices use energy. Next we discuss tricks to suc-
cessfully avoid ground collision energy losses.
Kinematic mechanisms. In the late 1800s Chebyshev
designed a kinematic one-degree-of-freedom walking de-
vice, based on an approximate straight-line mechanism,
that guided its endpoints (feet) in a manner that al-
most avoids ground collisions [8]. A slight change of
design could eliminate the small residual collisions [9].
Chebyshev-like mechanisms are used in the beautiful
wind-powered walking machines of Theo Jansen [10].
Compliant contact. One could put massless springs on
the bottom of the feet. These springs could be compli-
ant in one direction (telescoping along the leg) or in two
(2D). If a telescoping leg spring is used, zero-dissipation
requires that the foot velocity at contact be parallel to
the leg. McGeer found collisionless running motions us-
ing such a mechanism [11]. Walking motions with such
designs exist, at least using a point-mass body ([12, 13]).
If a 2D spring is used, collision losses at first contact are
precluded, but release of the contact is dissipative if the
tangential spring is still stretched when contact is lost.
Singular-limit of Passive Walking. Garcia et al.

[3, 14] found that some unactuated mechanisms can walk
down arbitrarily small slopes using gravitational power
scaling with v4 (v = average forward speed). Thus these
machines use arbitrarily small energy by moving arbi-
trarily slowly. Indeed, Chatterjee et al. [15] proved that
such a McGeer-type walker, with no upper body, cannot
walk at non-vanishing speeds on vanishing slopes.
In passive-dynamic walkers the normal collision still

vanishes as the step-length vanishes. Thus finite-speed
vanishing-energy-cost walking machine could use an in-
terleg spring with stiffness tending to∞, with step length
tending to 0, and step frequency tending to ∞ [6, 16].
Our Goal. We search for collisionless motions which
don’t use the tricks listed above. We seek a collisionless
motion of a device that, at least kinematically, allows
collisions to occur. That device does not use compliant
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FIG. 1: Three link walking model with hip springs. Modified
from [15]. 1©torso, 2©stance leg, 3©swing leg, 4©swing leg hip
spring, 5©stance leg hip spring, 6©stance foot, 7©swing foot,
8©ground. Model parameters are: I/cmt

=moment of Inertia
of the torso about its center of mass, mt=mass of the torso,
I/cml

=moment of Inertia of the leg about its center of mass,
ml=mass of each leg, ll=leg length, pt=leg’s center of mass
location, lt=torso length, pt=torso’s center of mass location,
K= torsional spring constant. Both springs have the same
spring constant.

contact with the ground to avoid collisions, and we look
for motions that have exactly (rather than in-the-limit)
zero energy cost for non-infinitesimal speed walking.
Chatterjee et al. [15] conjectured that a passive-

dynamic walking device with an upper body (see Fig.1),
could walk at a non-infinitesimal speed on level ground.
Here we check this conjecture using the model in Fig. 1.
Because our model has no actuators and no ground slip,
collisions are the only dissipation. Thus, we search for a
walking motion of our model that has no collisions as it
locomotes across level ground without any energy input.

II. MODEL

The model has two identical legs and a torso connected
by a common hinge (Fig. 1 see also [15]). Each leg is
also connected to the torso by a torsional spring which
is relaxed when the machine stands upright (θ1 = θ2 =
0, θ3 = π). Thus, if both legs are at rest with both feet on
the ground (at any angle φ), the upper body has an equi-
librium position (stable or not, depending on parameter
values) at θ3 = π. We assume two dimensional motion,
inelastic (no bounce) ground collisions, and arbitrarily
high friction (no slip) at ground contacts.
The equations of motion when one foot is on the

ground are determined by using angular momentum bal-
ance of the free leg about the hip, of the torso about the
hip, and of the whole system about the ground contact
point (see Fig. 1). This results in three second order,

nonlinear, coupled, ordinary differential equations in the
generalized coordinates θ1, θ2, and θ3.
Previously found passive-dynamic walking motions [11,

14, 15, 17–20] assumed one foot on the ground at a time.
Because of its upper body, the model here is capable of
extended double-stance. For simplicity we only search to
motions with no double stance (see appendix B).

For general motions, the discontinuity in θ̇ due to the
ground collision would be determined by angular momen-
tum balance of the whole mechanism about the new foot
contact point as well as angular momentum balance of
the two non-ground-contacting parts about the hip. Be-
cause our numerical search was only for collisionless mo-
tions (having no velocity discontinuities), we had no need
to evaluate the collision-transition relations.
The equations of motion can be rearranged in the form:

[M ]θ̈ = v, where [M ] is a 3×3 matrix depending on state,

θ̈ is a column vector of angular accelerations, and v is a
column vector with gravity terms and terms quadratic in
the angular rates. Due to the complexity of these equa-
tions, we repeatedly formed and solved them numerically
as we integrated forward in time (see appendix A).

III. SEARCH FOR ZERO ENERGY-COST

WALKING MOTIONS

Given mass and length parameter values and initial
values for the state (q ≡ [θ, θ̇]), the equations of motion
determine the subsequent motion. We sought the math-
ematical result that this system has a periodic solution.
The complexity of the governing equations seems to put
mathematical proof out of reach, so we sought firm nu-
merical evidence.
As is now common for such periodic locomotion prob-

lems ([21]), we treated one walking step as a Poincaré
map. Given the state just after one foot fall qn, the so-
lution of the governing equations defines the state after
the next foot fall, thus determining a map F (qn) = qn+1.
Our goal is to find a fixed point, q∗; i.e. F (q∗) = q∗. This
is equivalent to finding a root, q∗, of G(q∗) = 0 where
G(q) ≡ F (q)− q.
By simple equation counting it seems plausible to find

such a root. Finding a root of G is the same as find-
ing a solution of 5 scalar equations in 5 unknowns (the
Poincaré section is 6 − 1 = 5 dimensional). Previous
passive-dynamics studies sought, and often found, fixed
points of similar maps. We made additional symmetry
assumptions to simplify the search.
The model has both temporal and spatial symmetry.

Between foot contacts the equations of motion are time
reversible but, for general motions, the collision transi-
tion equations are not. However, the collisionless solu-
tions we seek have no discontinuities and are thus time
reversible; any conjectured solution running backward in
time is also a solution. Further, the fore-aft physical
symmetry of the device means that any solution can be
spatially reflected to obtain a second solution.
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We restricted our search to symmetric solutions which
were unchanged by being simultaneously reflected and
time-reversed. Thus half of a walking step fully charac-
terizes the full periodic motion (a full step is shown in
Fig. 2).
We used the spatially-symmetric ground contact

switching point as an initial condition, now restricted
to θ̇1 = θ̇2 = 0 (zero-velocity impact), θ1 = −θ2 (both
feet on the ground), and θ3 = π (symmetry). Defining
φ = θ1−θ2 at that point results in a 2 dimensional initial
condition space (φ, θ̇3). Our target is to have the swing
leg straight down and the torso straight up on the map
section where the stance leg is vertical θ1 = 0, θ2 = 0,
and θ3 = π. In other words, we seek special values of the
input variables(φ, θ̇3) to the map, H:

H(φ, θ̇3)|(θ̇1=θ̇2=0,θ1=−θ2,θ3=π) = (θ2, θ3)|(θ1=0) (1)

so that the output is (θ2, θ3) = (0, π). The map is R2 →
R

2 and our counting argument reduces to 2−2 = 0. Thus
for these restricted symmetric solutions it would again be
non-degenerate to find isolated solutions for the initial
conditions (φ and θ̇3 at θ̇1 = θ̇2 = 0, θ1 = −θ2, θ3 = π).
We sought a solution to this map by making a guess and
doing numerical root finding on Eqn. 1 using Newton’s
method.
As made plausible by the 2 = 2 equation counting

argument above, we found various fixed-point solutions.
Fig. 2 shows our central result, a zero-energy cost walking
motion. Although solutions do not exist for all possible
mass and length parameter values, solutions seem to exist
quite generally. Because we are trying to demonstrate
a mathematical result, and not an artifact of numerical
approximation, we wanted to find the root as accurately
as we could, thus the 12 significant figures given in Fig.
2 (see appendix C).

IV. RESULTS AND DISCUSSION

We close with a series of observations.
Rigor. This paper claims a mathematical result, the
existence of a root of a given function, as inferred by
a numerical search. Perhaps one could make the claim
mathematically rigorous by using other methods e.g. in-
terval arithmetic to generate an interval that necessarily
contains a root.
Stability. The stability of the given solution still needs
further study. It cannot be formally stable; small pertur-
bations can reduce the energy of the system from which
it has no means to recover. However it is possible that
the motion is one-sided stable, like the collisionless mo-
tions of the hopping block of Chatterjee et al. [22], which
returns to periodic motion for perturbations which add
energy. Alternatively, the solution could also be unstable.
However, even though the solution is not asymptotically
stable, a device built to implement this motion could
probably be stabilized via a controller (with negligible
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FIG. 2: (Color online)A collisionless periodic solution, with-
out initial ground penetration, for the walking model. The
snapshots shown in this figure are spaced evenly in time. The
“*” denotes the stride’s symmetric points. This solution uses
the following non-dimensional parameters: Ml = ml/ml =

1, Ll = ll/ll = 1, Pl = pl/ll = 0.5, Rl =
√

Ilegcm/ml/ll =
0.3,Mt = mt/ml = 0.7, Lt = lt/ll = 0.6, Pt = pt/ll =

0.3, Rt =
√

Itorsocm/ml/ll = 0.14, G = g/g = 1, κ =
K/(mlllg) = 1.5. The associated initial conditions (the result
of the numerical search after convergence tests; see appendix
C) are: φ/2 = 0.716749728386, θ′3 = -7.43120601953, where
(′) denotes derivatives taken with respect to non-dimensional

time, τ = t/
√

ll/g. Despite graphical appearances, θ′1 and θ′2
are not equal at the symmetry point (T = 0.5) (θ′1 ≈ −2.2
and θ′2 ≈ −2.5). The non-dimensional period of motion shown
above is about 2.621.

additional energy cost).

Oscillations. An unanticipated aspect of the solution
in Fig. 2 is the large number of upper body oscillations
per step. We searched for collisionless motions with fewer
oscillations, but found that the swing foot would immedi-
ately pass down through the ground when weight shift oc-
curred (see appendix B). To avoid this immediate ground
penetration, a relatively large angular velocity of the up-
per body was required. A non-systematic study with
approximately 10 parameter sets was done but all single
oscillation solutions found violated our ground penetra-
tion restriction.

Periodicity. Other zero-energy-cost steady walking mo-
tions may exist. The motions we found are symmetric,
but we cannot rule out the possible existence of pairs of
non-symmetric collisionless motions. We also cannot rule
out solutions with a periodicity of more than one step,
or even non-periodic solutions. Finally, we cannot ex-
clude the possibility of solutions which have an extended
double stance phase.

Applications. We have demonstrated the possibility of
using internal oscillations as a means of eliminating col-
lisional dissipation in forward walking. As opposed to
all other passive dynamic walking designs to date (e.g.
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[14, 17, 20, 23–25]), this device walks on level ground
(in the ideal sense that a wheel rolls steadily on level
ground), by eliminating relative velocity at collision. The
collision-reduction concept might partially explain as-
pects of animal and human coordination patterns. For
example, Maloiy et al. [26] conjecture that some African
women developed a technique to achieve a higher than
normal efficiency in walking when carrying a load and
we surmise it is possible that these women coordinate
the motions of their load to reduce collision losses with
the ground, thereby reducing metabolic effort. Further,
the mechanism shows that there is no fundamental limit
to the amount of energy saved by use of orthotics of the
type described in [27–29].
Conclusion. This paper shows by means of an example
that the only essential energetic costs for walking are
those associated with non-ideal effects (joint friction, air
friction, imperfections in the trajectories, etc). Energy
losses via collisions are not essential for walking, even
idealized passive dynamic walking.
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APPENDIX A: EQUATIONS OF MOTION AND

MAP

We did not explicitly form the equations of motion
for this device, as we deemed them too lengthy. Even
if generated with computer algebra, we have found that
manipulating such large equations adds no insight yet
increases chances for error in text manipulation. Rather,
we carry out our integration without forming the state
derivatives explicitly, generating the numeric values of
the derivatives as needed for each integration time step.

The use of this procedure makes every line of the program
(available upon request) short and interpretable.
There is no possible analytic solution for the two di-

mensional map. It requires solution for the time, t∗, when
θ1(t

∗) = 0. Even for linear problems with closed form
solutions, evaluation of this time (t∗) generally involves
solution of a transcendental equation [14].

APPENDIX B: GROUND CONTACT ISSUES

Lift off. Upon release of the foot-contact ground con-
straint, the just released foot can have a positive or nega-
tive vertical component of velocity [30]. We excluded so-
lutions where the foot’s first motion is through the floor.
Scuffing. Straight legged walkers in 2D will scuff their
feet when the swing leg passes by the stance leg. In
ours, as well as other straight legged passive-dynamics
research, scuffing is ignored. Such scuffing is viewed as a
decoupled problem (solved by various means: walking on
spaced tiles, retracting ankles, or bending knees). Such
anti-scuffing mechanisms used in a physical device will
have a small effect on the dynamics.

APPENDIX C: ACCURACY OF INTEGRATION,

MAP AND ROOT

We used a fixed step-size 4th-order Runge-Kutta rou-
tine to numerically integrate our equations of motion.
Henon’s method[31] (a change of variables that replaces
a traditional root finding procedure) was used to accu-
rately determine the location of the event (mid-stride,
θ1 = 0). Newton’s method (using finite differences to
approximate the Jacobian) was used to to find the fixed
points of the map. The numerical error was estimated
in the absence of the true solution by using successive
approximate solutions with successively smaller integra-
tion step-sizes [32]. At large step sizes truncation errors
dominate, at small step sizes round-off errors dominate.
A convergence plot shows that round-off error begins to
dominate, at a relative error of about 10−12, when the
step size is less than about 10−4.5. Thus our total nu-
merical error is safely below 10−11 at that step size.
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