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Disclaimer

This document has been prepared in good faith on 
the basis of information available at the date of 
publication without any independent verification. No 
party guarantees or makes any representation or 
warranty as to the accuracy, reliability, 
completeness, or currency of the information in this 
document nor its usefulness in achieving any 
purpose. Readers are responsible for assessing the 
relevance and accuracy of the content of this 
document. It is unreasonable for any party to rely on 
this document for any purpose and no party will be 
liable for any loss, damage, cost, or expense 
incurred or arising by reason of any person using or 
relying on information in this document. To the 
fullest extent permitted by law (and except to the 
extent otherwise agreed in a signed writing by a 
party), no party shall have any liability whatsoever to 
any other party, and any person using this document 
hereby waives any rights and claims it may have at 
any time with regard to the document. Receipt and 
review of this document shall be deemed agreement 
with and consideration for the foregoing. 

All parties are responsible for obtaining independent 
advice concerning legal, accounting or tax matters. 
This advice may affect the guidance in the 
document. Furthermore, no party has made any 
undertaking to update the document after the date 
hereof, notwithstanding that such information may 
become outdated or inaccurate. Any financial 
evaluations, projected market and financial 

information and conclusions contained in this 
document are based upon standard valuation 
methodologies, are not definitive forecasts, and are 
not guaranteed by any party. No party has 
independently verified the data and assumptions 
from these sources used in these analyses. Changes 
in the underlying data or operating assumptions will 
clearly impact the analyses and conclusions. This 
document is not intended to make or influence any 
recommendation and should not be construed as 
such by the reader or any other entity.

The content included herein stems from an 
engagement to write a commissioned report 
whereby BCG was compensated by Wellcome. 

This document does not purport to represent the 
views of the companies mentioned in the document.  
Reference herein to any specific commercial 
product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, 
recommendation, or favouring by any of the parties 
involved in compiling the document.

Other than the logos or other marks and similar of 
BCG and Wellcome, the contents of this document 
may be reproduced, distributed, or circulated 
provided that the source is acknowledged with the 
following acknowledgement: “This report and its 
findings were produced and co-authored by 
Wellcome and BCG.”
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Context and Objectives of this report 
The discovery of new medicines is critical to 
improving human health. As dramatically highlighted 
by the race to find therapeutics and vaccines for 
COVID-19, innovation can drive enormous health 
impact. However, drug discovery is an increasingly 
expensive, risky, and time-consuming proposition 
– estimated to cost approximately $2.5 Bn to bring a 
new drug to market when accounting for the cost of 
failures [1], [2]. Scientific and technical challenges 
mean the probability of discovering a new drug and 
progressing it to clinical trials is in the range of 35% 
and the probability of successfully taking a 
candidate from Phase 1 trials to regulatory approval 
only 9-14% [3], [4]. Overall, the process takes on 
average 12-15 years [5].

This combination of significant cost, risk, and time 
acts as a major barrier to innovation, with market 
forces often channelling R&D efforts into areas with 
large commercial returns such as Oncology and 
Immunological diseases. In contrast, therapeutic 
areas (TAs) not typically supporting high price 
points, such as many infectious diseases, are often 
struggling to secure funding. 

Over the past decade, the field of artificial 
intelligence (AI) has progressed enormously, with 
major advances in machine learning, neural 
networks, deep learning, generative AI and other 
areas. The potential to apply AI techniques to 
accelerate and improve drug discovery has 
garnered growing interest from the pharmaceutical 
industry, tech companies, investors, and funders of 
biomedical research. Public and policy maker 
awareness is also growing through high-profile 
successes, such as the AlphaFold2 algorithm 
successfully predicting the 3D structure of human 
proteins in 2020 [6].

AI has the potential to materially alter the economics 
of innovation, allowing new medicines to be 
discovered for a much wider set of conditions and 
patient segments, and by a wider membership of 
the research community than is possible today. If 
this potential can be realised, the impact on human 
health and health equity could be profound.

This report takes stock of a rapidly evolving field and 
aims to (i) identify the key use cases and 
applications of AI in drug discovery (ii) assess the 
maturity of these use cases (iii) baseline adoption 
and determine current barriers and (iv) identify 
solutions to overcome barriers to unlock the 
potential of AI in drug discovery. This report is 
targeted towards the broad drug discovery 
community and specifically considers how funders 
could play a role to shape this field. 

Key findings
The current status and future potential of AI in drug 
discovery was analysed through review of published 
literature, exploration of patent, funding and 
investment data, expert interviews, and surveying 
members of the drug discovery community. From 
this analysis, a mixed picture emerges – we see 
some areas where AI delivers value today in drug 
discovery, but also many areas where the promise is 
yet to be fulfilled.

Five major AI use case families in drug discovery 
were identified:

• Understanding disease use cases deploy AI to 
identify and validate new targets for drug 
discovery efforts. 

• Small molecule design and optimisation use 
cases deploy AI for identifying hit-like or lead-like 
small molecule compounds and optimising the 
identified hits for favourable properties.

• Vaccines design and optimisation use cases 
encompass AI applications specific to the 
discovery and design of vaccines, with a primary 
focus on mRNA-based vaccines.

• Antibody design and optimisation use cases 
deploy AI to identify and optimise antibody 
structures and formats, binding and other 
properties. 

• Safety and toxicity use cases deploy AI to 
evaluate the safety profile of a therapeutic or 
vaccine of interest.

The field is maturing rapidly, though unevenly:

• Publications and patents related to AI-enabled 
drug discovery have grown by 34% and 17% 
respectively year-on-year over the last five years. 

• Efforts however are skewed towards a small 
number of use cases with over 80% of 
publications in the last five years focused on 
applying AI to understanding disease, target 
discovery and small molecule optimisation. 

• Private funding is skewed towards the most 
commercially tractable therapeutic areas with 
~70% of AI-related investments in the last five 
years being made in oncology, neurology, and 
COVID-19.

• Private sector funding for AI-related drug 
discovery efforts is almost exclusively flowing to 
high-income countries (HICs) and China.

Adoption of AI tools varies significantly:

• Despite increasing investment and research 
activity in developing AI tools for understanding 
diseases and small molecule optimisation, 
adoption lags with less than a third of survey 
respondents across industry segments using AI 
tools routinely today.
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• Overall, industry drug discovery efforts are more 
likely to be systematically deploying AI 
approaches today versus academia where 
adoption varies widely and is typically focused 
on open-source tools. Even within industry, there 
is a wide spectrum with adoption led by ‘AI-first’ 
biotechs who have built their R&D workflow and 
value proposition around AI tools, and some 
pharmaceutical companies who are pioneering AI 
in drug discovery.

• Adoption is much higher in HICs than in low- and 
middle-income countries (LMICs) – 42% of HIC 
survey respondents stated regular use of AI 
approaches versus 19% of LMIC respondents. 

• Despite varying adoption rates, there is broad 
consensus on the future potential of this technology 
with 84% of current AI users and 70% of current 
non-users stating that they expect AI to drive 
significant impact in drug discovery over the next 
five years.

Early proof points are emerging, but a key test 
will come in the clinic:

• Modelling based on extrapolation of publicly 
available data from early AI programmes suggests 
AI-driven R&D efforts from discovery up to 
preclinical could deliver time and cost savings of 
at least 25-50% (see Appendix section 10.5).

• Drugs developed through AI approaches are now 
entering the clinic, which will be a critical test of 
whether these drugs can also deliver on a key 
postulated benefit – improving on current 
standards of care and/or having a higher 
probability of clinical success.

• Whilst time and cost savings are helpful, modelling 
shows it will be improvements in probability of 
success in the clinic that delivers the biggest 
impact from AI in drug discovery and a step 
change in the economics of R&D.

Barriers must be addressed to unlock the full 
potential of AI:

• Trust in AI is a major barrier in many of the 
settings explored in this report. Although 
sentiment ranges widely, common themes 
include the perceived lack of value proofs in drug 
discovery and overall uncertainty about AI in 
general, and what rapid advances in AI could 
mean for science and wider society.

• Lack of high-quality data sets, access to mature 
tools, and relevant AI and drug discovery 
capabilities constrains the value being delivered 
from AI today. 

• The challenges are particularly acute in applying 
AI to commercially less attractive therapeutic 
areas and for LMIC researchers looking to 
harness AI. For example, longitudinal population 
datasets that can be mined to understand 
diseases and identify new targets may be scarce, 
of lower quality or absent in LMIC settings.

• Lack of commercial potential can limit data-
generation and the applicability of key tools – 
with the potential for AI to amplify disparities in 
health equity. For example, whilst commercially 
attractive therapeutic areas such as oncology are 
well served, there is no equivalent in infectious 
diseases despite the much greater health-burden 
in many geographies. 

• Even when high-quality data and mature tools 
are available, access to inter-disciplinary 
capabilities such as computational chemistry and 
bioinformatics has emerged as a key barrier in 
many settings. 

Initiatives are emerging to tackle  
these barriers:

• Efforts such as the World Economic Forum and 
University of Oxford’s AI Governance Research 
group are working to improve understanding and 
trust in AI across a range of settings including 
medical research.

• Initiatives are being established to create or 
enrich data and enable greater access. For 
example, the Wellcome-Sanger African Genome 
Variation Project is laying the foundations for 
generating high-quality genomic datasets in 
Africa. The US NIH is also funding grantees to 
clean and standardise existing datasets to 
improve their applicability to machine learning 
techniques – which is particularly critical in 
data-poor therapeutic areas. 

• Powerful AI tools available to commercial R&D 
organisations are also in some cases being 
opened for use in less commercially attractive 
areas, such as, the Moderna Access and 
Atomnet platforms being deployed for historically 
under-invested infectious diseases.

• Capability gaps, particularly in LMIC settings are 
being explored and solutions trialled, such as, 
H3D-Ersilia’s collaboration that provides a fully 
funded 4-day course to researchers in Africa on 
the use of AI in discovering drugs for locally 
relevant infectious diseases.

However, on the current trajectory, existing 
initiatives will be insufficient to unlock the 
potential of AI in Drug Discovery in ways that can 
equitably address urgent health needs.
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Recommendations and call to  
action for funders
Unlocking the potential of AI in Drug Discovery will 
require a combination of ecosystem-wide actions 
and a broad portfolio of point solutions advancing 
specific use cases and expanding the applicability 
of AI in new therapeutic areas. This report has 
identified potential actions to be taken across four 
key areas:

1. Increasing trust in and understanding of AI in 
drug discovery 

2. Developing high-quality datasets 

3. Developing AI tools

4. Building capabilities

The report outlines actions that can be taken to 
increase maturity, expand access and support 
standardisation (see Figure 18). For example, 
actions to develop high-quality datasets may include 
enriching existing datasets with more entries or 
fields (increasing maturity), making currently 
proprietary data widely available to researchers 
(expanding access) or supporting the adoption of 
standard data structures to enable AI models to 
parse more available data (standardisation).

Priorities for funders will be determined by each 
organisation’s strategic goals and capabilities in this 
space, with this report suggesting a call to action for 
funders in six key areas:

1. Find value from AI today by ensuring current 
grantees and partners are leveraging AI where 
use cases are mature e.g., small molecule design 
and optimisation or target identification in data-
rich TAs such as oncology or immunology.

2. Take no-regret moves to maximise future 
value from research efforts generating data that 
might have utility in training AI models e.g., by 
mandating that data is published in open-
access repositories, is machine readable and 
contains the requisite meta-data to support 
future interpretation.

3. Build coalitions to shape the ‘rules of the 
road’ with funders acting in concert globally to 
build norms in this rapidly developing field e.g., 
on data access, maintenance of open-source 
tools, transparent benchmarking of tool 
performance and expansion of training and 
development programs to data scientists and 
related AI disciplines.

4. Invest where AI intersects with drug 
discovery goals to see value today from mature 
use cases or to critically assess where AI most 
closely intersects with drug discovery goals and 
where intervention may be needed to accelerate 
progress e.g., in data-poor TAs such as 
infectious diseases where new foundational 
datasets may need to be generated before AI 
can deliver value, or where capabilities in LMICs 
may need to be upgraded to support local 
discovery efforts.

5. Contribute to the public debate as AI rapidly 
emerges as an ‘all-of-society’ topic and as new 
regulatory and legal instruments are being 
developed that will impact funders e.g., through 
transparency on AI-related activities, outcomes 
(positive and negative) and advocacy for AI-
enablers such as equitable data access and 
standardisation.

6. Build the organisational capabilities to deliver 
a range of AI activities including critically 
identifying AI opportunities, advising current 

grantees on application of AI to their research, 
and appraising future grant applications e.g., by 
funders determining how AI fits into their funding 
strategy and programme of calls and then 
ensuring the organisation has access to the right 
capabilities (internally or externally) at the right 
level of capacity to deliver.

AI in drug discovery is at an inflection point. A 
number of mature use cases are delivering value 
today and provide immediate opportunities to help 
researchers discover new medicines to improve 
human health. At the same time, barriers risk 
concentrating the benefits of AI to already data-rich 
and commercially attractive TAs with limited 
opportunity for researchers in other areas to engage. 
Concerted action is needed today to shape this 
emerging field and set the ‘rules of the road’ that will 
allow equitable benefit from the transformational 
opportunities of AI in drug discovery.
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2. About this 
report
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2.1. Scope

Report objectives
Applications of AI in drug discovery are advancing 
rapidly and generating significant attention from 
industry and academia, as well as funders and 
policy makers. Interest amongst the public has also 
grown significantly in recent years as advances in AI 
are reported by the popular media. 

However, many stakeholders have struggled to 
separate fact from hyperbole. Assessing the current 
status and future potential of AI in drug discovery 
typically requires knowledge of both data science 
and drug discovery. As a result, the ability to 
evaluate the topic is often limited to a small number 
of well-funded companies and institutions, and there 
are few publicly available resources that describe 
the field.

This report, intended as a global public good, aims 
to provide a fact-base for stakeholders looking to 
understand the current status and future potential of 
AI in drug discovery. It is also intended for funders 
considering how to engage on this critical topic (see 
Figure 1 for more detail on report objectives).

Given the broad interest in the field, this report is 
designed to be informative for stakeholders directly 
involved in the drug discovery process (e.g., 
academics, industry researchers) as well as 
stakeholders that influence the field (e.g., funders, 
policy makers and non-profits). 

Figure 1 – Objectives of this reportTechnological scope
In this report, AI is defined as an umbrella term for a 
range of advanced computational and modelling 
techniques that analyse and learn from often large 
and complex data sources and can generate 
insights or perform tasks that would typically require 
human-level intelligence, at a scale and speed 
beyond human capability. Techniques classified as 
AI for the purposes of this report includes:

• Machine learning (ML) – a subfield of AI that 
focuses on developing algorithms and statistical 
models that enable computers to learn from and 
make new predictions or decisions based on 
data. ML techniques include, for example, the 
random forest algorithm, or the Naïve Bayes 
classifier.

• Deep learning – a subset of ML which uses 
artificial neural networks to learn increasingly 
complex representations of input data, such as 
unstructured data and image recognition. Model 
types include, for example, convolutional neural 
networks (CNNs) and autoencoders.

It is important to point out that Large Language 
generative Models (LLMs), are a subfield of deep 
learning, and its impact on drug discovery is an 
emerging topic that is currently receiving much 
attention. However, it is not covered in this report due 
to the paucity of reliable research published to date. 

Identify solutions to 
overcome theses barriers to 
unlock the potential of AI in 
drug discovery

Assess the maturity 
of AI in Drug Discovery across 
modalities, stages of the drug 
discovery value chain, and 
therapeutic areas

Baseline the adoption of AI in 
drug discovery and determine 
current barriers limiting its use

Identify the key use cases 
and applications of AI in 
drug discovery



Scope of R&D activities
This report focuses on the application of AI on the 
discovery portion of drug research and development, 
encompassing all steps from target identification up 
to and including pre-clinical development (see Figure 
2 for definitions of each phase). The analysis covers 
both academic and industrial research, across 
high-income countries (HICs) as wells as low-and 
middle-income countries (LMICs).

When considering the application of AI within 
industry, this report will focus on two types of 
organisations: pharmaceutical companies and 
‘AI-first’ biotech companies. The latter has been 

defined as biotechnology companies for which AI is 
central to their discovery activities. 

Whilst there is great value of applying AI to other 
aspects of drugs and vaccines – such as in clinical 
trials (e.g., protocol design), chemistry 
manufacturing and controls (e.g., raw material 
forecasting), lab efficiency (e.g., reagent 
identification), diagnostics (e.g., image analysis) – 
these are beyond the immediate scope of this report 
owing to their limited activity in academia and 
resource-constrained settings, thus focusing on a 
different stakeholder group to that of drug discovery.
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Figure 2 – Description of each phase in drug discovery 

Description 
of Phase

Target Identification and Validation

Target Identification 
and Validation

Identifying and 
validating a target 
through desktop 
research, 
demonstrated in 
vitro evidence

Target 
Characterisation

Understanding target 
and identifying 
function-modifying 
sites, designing 
antigens, etc.

Molecule Optimisation

Hit Identification 

Screening 
molecules/mAbs/ 
antigens for desired 
response, often using 
high-throughput 
screening  

Hit to Lead

Con�rming basic 
desirable properties 
of hit and 
short-listing best 
hits for next step

Lead Optimisation

Optimising lead 
towards desired 
properties, including 
absorption, solubility 
and developability

Preclinical

Preclinical

Selecting candidates 
for Investigational New 
Drug application and 
clinical studies based 
on studies in animals

Modality scope
This report focuses on the use of AI to develop new 
small molecules and biologics – specifically 
monoclonal antibodies (mAbs) and vaccines, 
focussing primarily on the mRNA modality for the 
latter. These modalities have been selected due to 
their potential to serve a significant portion of global 
health needs. Small molecules, mAbs and vaccines 
are already widely deployed globally and represent 
the major focus of drug discovery efforts. In 
contrast, highly personalised therapies, such as cell 
therapies and gene therapies, are currently only 
narrowly adopted and remain challenging to 
manufacture and administer at scale. These latter 
therapies are beyond the scope of this report.
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This report combines three analytical approaches to 
develop a perspective of AI in drug discovery:

1. Desk research including literature review, 
patent analysis, private sector funding analysis 
and review of pharmaceutical and ‘AI-first’ 
biotech R&D pipelines.

2. Stakeholder survey to gain perspectives from a 
broad mix of individuals across academia and 
industry, and across a range of geographies.

3. Expert interviews to pressure test findings and 
supplement analysis via expert input.

These analyses were then synthesised to answer 
four research questions:

1. What is the current state of AI in drug 
discovery?

2. How are AI use cases currently being adopted 
across different drug discovery settings?

3. What are the barriers to further adoption of AI in 
drug discovery?

4. What initiatives could support further adoption 
of AI in drug discovery?

2.2. Methodology 

Additional methodology used for specific analyses is 
described below:

• Literature review was performed based on a 
keyword search for papers appearing in Web of 
Science (a research aggregation platform) in the 
last five years (2018-2022). To support 
interpretation, data was then clustered and 
visualised using Quid – a tool that deploys AI to 
semantically cluster data. 

• Patent analysis was conducted based on 
LexisNexis PatentSight entries in the last five 
years (2018-2022), filtered based on relevant 
keywords.

• Private sector funding for approximately 200 
‘AI-first’ biotechnology companies and 20 large 
pharmaceutical companies was assessed using 
Pitchbook, Biomedtracker and press releases 
from the last five years (2018-2022). See section 
10.4 for the list of ‘AI-first’ biotechs.

• Pipeline review was limited to 96 of the 
approximately 200 ‘AI-first’ biotechs, where 
information was publicly available through 
Citeline PharmaProjects and company press 
releases over the last five years (2018-2022).

• Stakeholder survey received online responses 
from 102 individuals across academia, industry, 
and funders from both HIC and LMIC settings. 
Topics covered were current and planned future 
adoption of AI, perceived current and future value 
of AI, barriers to adoption of AI and potential 
solutions.

• Expert interviews canvassed in-depth 
perspectives from 55 experts across academia, 
industry, and funders from both HIC and LMIC 
settings.

Findings were additionally calibrated and refined 
with a Scientific Committee consisting of academic 
and industrial experts in the field. The Committee 
met three times over the course of producing this 
report. See acknowledgements for the composition 
of the Committee (Section 9.2). 

Collectively, these data sources and analyses 
enabled both a quantitative and qualitative 
assessment of the maturity, adoption, and perceived 
value of AI techniques within drug discovery today, 
and barriers that would be most important to 
overcome to unlock the true potential of AI within 
this field going forward.
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Figure 3 – Data inputs and process used to inform report findings
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Define 
current 
state

Literature Review

·  Reviewed key papers identi�ed in Web of 
Science based on de�ned search terms

Patent and Literature Thematic Analysis

·  Analysed ~7000 relevant publications and 
~1000 patents to identify key themes, focus 
areas and evolution over time 

Assess 
private 
sector 
activity

Private Sector Funding

·  Quanti�ed funding for ~200 'AI-�rst' biotechs

·  Identi�ed 55 AI partnerships with Top 20 
pharmaceutical companies

Pipeline Analysis

·  Analysed ~500 therapeutics from ~100 
'AI-�rst' biotech pipelines

Understand 
adoption, 
barriers and 
solutions

Online Survey

·  >100 respondents from 7 industries (incl. 
academia, biotechs, pharmaceutical 
companies) and 29 countries across Europe, 
USA, Africa, Asia Paci�c

Expert Interviews

·  Conducted ~55 expert interviews to 
validate �ndings from desk research 
and explore potential solutions

Key Insights

Validate and refine findings

Scientific Committee 
and ad-hoc expert interviews 

·  10 Scienti�c Committee members (4 
from academia, 5 from pharmaceutical 
companies/biotechs, 1 from tech 
company)

Report
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3. Promise of 
AI in drug 
discovery 
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Significant advances have been made in the field of 
AI over the past two decades. AI is now routinely 
applied in many industries, and current AI 
applications cover a broad range of activities, 
including image recognition, mining of large and 
unstructured datasets, personalised learning, and 
many others. In the last 6-12 months, breakthroughs 
in large language models, such as GPT-4, are 
redefining human-computer interactions.

Drug discovery is no exception to these broader 
trends seen in AI. Whilst computational methods in 
drug discovery gained widespread adoption through 
the 1990s and early 2000s, the adoption of AI is 
more recent. In the 1990s, researchers increasingly 
employed computer-aided drug design (CADD) to 
support both data generation and data analysis to 
build more accurate hypotheses, which 
consequentially, led to an exponential increase in the 
quantity of data related to drug discovery. Whilst this 
digitalisation came with newfound challenges, 
namely how to best use and analyse such large 
volumes of data to aid the solving of complex 
clinical problems, it also brought about a better 
understanding of algorithmic principles – and thus 
the dawn of the use of AI in drug discovery [7]. 

Over the past five years, the field has seen numerous 
breakthroughs. Most high-profile, perhaps, was the 
development of AlphaFold, a deep learning algorithm 
which can predict protein structures with an accuracy 
that approaches experimental methods [6]. This has 
fuelled research on a range of protein targets which 
had no experimentally characterised structure. Other 
key milestones in recent years has been the initiation 
of Phase I clinical trials for numerous AI-discovered 
drugs and vaccines, such as Relay Therapeutic’s 
selective inhibitor of FGFR2 [8].

AI has the potential to create significant value in drug 
discovery, primarily through three main drivers: (i) time 
and cost savings, (ii) increased probability of success, 
and (iii) novelty of both the molecular target and 
optimised therapeutic agent [9]. 

With regards to time and cost, AI has the potential to 
impact traditional drug discovery in several ways:

• AI could reduce the reliance on lengthy and 
expensive experiments and direct experimental 
efforts to areas with greatest impact (e.g., focusing 
target validation efforts on predicted disease-
relevant targets), or in other cases replacing 
experiments entirely (e.g., virtual compound 
screening). These approaches can help researchers 
to “fail faster” and evaluate a broader range of 
targets or therapeutic compounds before 
progressing to experimental testing.

• AI could also adjust the drug discovery workflow. 
Traditionally, different teams have been responsible 
for each of the steps across the value chain, such as 
library design, compound screening, and synthesis. 
AI provides the opportunity to amalgamate these 
steps into one, streamlined – and potentially fully 
automated – process, reducing the need for in-
process decision making. AI, therefore, augments 
the work of experienced human scientists and 
allows them to concentrate efforts at the end of 

AI usage will continue to rapidly ascend as 
tools improve. AI will play a huge role in 
processing large amounts of data which is vital 
for drug and vaccine discovery.

AI Lead, Health Research Institute 

AI has the potential to identify more targets 
and candidates quicker. There will need to be 
a significant shift in the industry model to cater 
for this explosion of opportunity.

Senior Executive, AI Software Company

Early-stage drug and vaccine discovery 
entails several rounds of optimisation and 
experiments which are costly and not easily 
accessible in resource-limited settings. AI 
tools can assist in prioritising the most 
promising targets and cut the number of 
experiments and costs in this area.

Infectious Disease Lecturer, LMIC

AI could also improve the likelihood of discovering 
a successful therapeutic. Firstly, when used on 
appropriate datasets, AI may develop additional or 
improved hypotheses than traditional methods alone 
by synthesising vast datasets. Secondly, AI may be 
able to better select therapeutics with desired 
properties than traditional experimental methods. 
This could take the form of properties such as 

AI-powered workflows. Additionally, rather than a 
linear progression from lead optimisation to ADME 
evaluation, predictive models also enable 
optimisation for multiple properties in parallel, 
thereby compressing discovery timelines.

• We see some indications of this where ‘AI-first’ 
biotechs have developed large preclinical portfolios 
in relatively short timelines (43 preclinical and 22 
clinical assets from public ‘AI-first’ biotechs founded 
in the last 10 years alone)
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efficacy, pharmacokinetic and metabolic properties, 
or those which result in more globally accessible 
therapeutics – such as thermostability, which could 
reduce reliance on cold chain supply and storage. 
Additionally, AI may be more capable at subsequently 
optimising these therapeutics for properties such as 
toxicity and immunogenicity to improve the likelihood 
of success during clinical phases. Proof points are 
emerging here, with 73 clinical assets from ‘AI-first’ 
biotechs catalogued as part of this work, with read 
outs expected in the next few years (see Appendix 
Section 10.6).

AI will create new opportunities and drive 
innovation. It will help us fully explore the 
chemical space and hence find novel drugs.

Head of R&D, Pharmaceutical Company

Given the rapid progress of AI, it is almost 
inconceivable that AI won’t have a role in drug 
and vaccine discovery. It will work – It’s just a 
matter of when and how.

Senior Associate, Life Science Venture Capital 

There are very few things that can increase the 
chances of luck in finding a good hit and AI is 
one of them.

Head of Vaccines, Pharmaceutical Company

Finally, the novelty of both discovered therapeutics, 
and the targets they select for, could be enhanced by 
AI. Models may be able to generate novel therapeutic 
structures, such as bi or tri- specific antibodies, owing 
to their ability to explore a much vaster chemical/
biological space than humans can alone [10]. These 
novel structures may possess properties which enable 
the targeting of previously undruggable targets. For 
example, Absci’s zero-shot generative AI model 
designs novel de novo antibodies that bind to specific 
targets without using any training data of antibodies 
[11]. AI may also be able to elucidate novel disease-
driving pathways by establishing links between 
disparate biological signals – and thus identify new 
targets within these pathways that could be modulated 
therapeutically to treat the underlying disease. Recent 
partnerships highlight the perceived value of these 
approaches, for example, notable target discovery 
partnerships between AstraZeneca and BenevolentAI, 
and Insilico Medicine and Sanofi [12], [13]. 

However, whilst there is promise in the value of AI in 
drug discovery, this potential has yet to be 
demonstrated at scale, across populations and 
disease areas. For AI to truly realise its full potential 
in addressing global health challenges at scale, 
there is a need for better understanding its current 
applications and limitations, and the barriers that 
face the industry today. 
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4. AI applications 
in drug 
discovery 
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4.1. Current challenges along the 
drug discovery workflow

As a starting point for assessing AI applications in 
drug discovery, the current drug discovery process 
was examined, and general pain points identified 
(see Figure 4). For example, within the molecule 
optimisation phase, there is often a need to 
complete multiple lengthy design-make-test cycles 

to define a therapeutic with desired properties – and 
this not only increases the duration of the discovery 
process, but also adds significant cost.

Other pain points are specific to a modality or 
discovery strategy. For example, in vaccine 

discovery it is often challenging to identify optimal 
antigenic sequences as experimental methods 
normally employed to explore the binding affinities 
of antigens to proteins of the human immune system 
are often complex and laborious to conduct [14]. 

Figure 4 – Key pain points along the drug and vaccines discovery process today
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4.2. AI use cases along the drug 
discovery workflow

The analysis of literature, patents as well as input from 
drug discovery experts via interviews and survey, 
suggests five major families of use cases for AI in drug 
discovery (outlined in Figure 5):

1. Understanding disease use cases deploy AI to 
identify and validate new targets for drug 
discovery efforts. These typically include 
deploying AI to automate image analysis from 
phenotypic screens; -omics mining (e.g., 
proteomics, genomics) to better understand 
how a given target modulates disease 
progression; protein dynamics modelling to 
understand how a target interacts with a disease 
pathway; and biomarker identification to better 
segment patient populations for drug research.

compounds both via screening of existing 
chemical libraries and via generative de novo 
design.

3. Vaccines design and optimisation use cases 
encompass AI applications specific to the 
discovery and design of vaccines, with a primary 
focus on mRNA-based vaccines, but in some 
instances use cases can be applied to other 
vaccine modalities. For example, AI use cases 
on epitope selection, prediction and binding are 
applicable for all vaccine designs, irrespective of 
modality. On the other hand, use cases 
pertaining to codon and delivery system 
optimisation – to ensure heightened protein 
production per dose with minimal toxicity – are 
specific to the mRNA vaccine modality.

4. Antibodies design and optimisation use cases 
deploy AI on a wide range of applications 
focused on identifying and optimising antibody 
structures and formats, binding and other 
properties. For identification of molecules, two 
core AI applications exist – the screening of 
pre-existing libraries and the more nascent de 
novo design capabilities. There are also 
emerging examples of where AI has played a 
role in the subsequent optimisation of these 
molecules, for example, for binding 
physicochemical and humanisation properties to 
ensure high target specificity, affinity and 
potency.

At nearly every stage of the drug and vaccine 
discovery process there is an opportunity for AI. 
But it is not a simple solution where you ‘press a 
button’ and a chemical comes out. We need 
medicinal chemists to be able to interpret the 
output of the AI models as ultimately that is 
where the value is.

Head of Vaccines, Pharmaceutical company

There is an abundance of opportunities to use 
AI to better understand diseases. There’s 
already a vast amount of existing data that AI 
can synthesise to establish disease pathways.

Head of R&D AI, Pharmaceutical company

5. Safety and toxicity use cases focus on using AI 
to evaluate the safety profile of a therapeutic or 
vaccine of interest. Given the highly specific 
nature of established toxicity approaches, there 
are relatively fewer applications of AI within this 
space, compared to the other use cases. Also, it 
is often challenging to build generalisable AI 
models for safety ad toxicity which can be 
applied to a broad range of settings. However, 
some point solutions do exist which mostly fall 
into one of three use cases – predicting off-
target impacts; simulating pharmacokinetics and 
dynamics; and modelling the interactions 
between the molecule of interest and a 
biological system via quantitative systems 
pharmacology (QSP).

Irrespective of use case family, experts highlighted 
that AI would not replace the role of experienced 
drug discovery scientists, but rather enhance it by 
allowing scientists to focus on higher-value and 
more varied tasks.

2. Small molecule design and optimisation 
use cases deploy AI for two types of 
activities: identifying hit-like or lead-like 
small molecule compounds; and optimising 
the identified hits for favourable properties 
such as binding affinity, toxicity, and 
synthesis. AI can be utilised for identifying 
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Figure 5 – Over of AI use cases based on analysis of literature, patents, as well as input from drug discovery experts
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5. Current 
state of 
AI in drug 
discovery
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This section assesses the current state of AI tool 
development in drug discovery across sectors 
(academia, pharmaceutical and biotech companies), 
modalities (small molecules, biologics), therapeutic 
areas (oncology, infectious diseases, neurology etc) 
and geographic settings (HICs and LMICs). Leading 
indicators of tool development are then assessed 
within academic settings and commercial 
advancements, through the progress of ‘AI-first’ 
biotechs across our use case map.

Use cases and applications of AI in  
drug discovery
Figure 6 shows an analysis of publications on AI in 
drug discovery by use case family. In the period from 
2018 to 2022, AI was most frequently applied to use 
cases pertaining to understanding diseases and small 
molecules design and optimisation, suggesting a 
greater maturity of these use cases. While design and 
optimisation of vaccines and antibodies historically 
lagged, they are now accelerating rapidly, driven in 
part by research efforts in the context of the 
COVID-19 pandemic. Biologics AI use cases are also 
growing, driven by increasing sophistication of AI 
technology and algorithms, growing computing 
power, increasing availability of data, and evolving 
discovery workflows [15]. Finally, safety and toxicity 
use cases are also relatively nascent but growing, 
and literature suggests that this is driven by the lack 
of publicly available data from which AI models can 
be trained [16].

5.1. Evolution of AI tools in drug 
discovery 

Biological problems are not only more complex 
to understand (than chemical ones) but also 
much harder to solve computationally as there 
is less data available.

Microbiology researcher, LMIC

Safety and toxicity is one of the pockets of 
pharmaceuticals where AI is neglected, as it is 
hard to automate in vivo models.
Senior Director, Pharmaceutical company

AI has large innovation potential especially 
within Understanding Disease. The biology we 
are trying to understand cannot reasonably be 
understood by people – we need the AI models.

Senior Executive, Pharmaceutical company 

detailed analysis (Appendix Figure 20) shows that, 
(-omics) data mining to link target to disease and 
drug repurposing were the most frequently 
published sub-use cases deployed for 
understanding disease. However, it should be noted 
that the true extent of -omics publications is likely 
under-represented in this analysis given the long-
established precedence for AI approaches to pattern 
recognition within this type of data.

 
-omics mining was big a decade ago. Tools 
are so standardised that no one mentions AI in 
omics anymore, it’s just assumed.

Lead Developer, Scientific AI Software

In our expert interviews and survey, we see that 
many drug discovery organisations view target 
identification and validation, as a key competitive 
differentiator. This attention to improving 
understanding of diseases has driven some 
therapeutic areas to reach a tipping point in terms of 
the quality and quantity of data available to train AI 
models against. Not only are new data sources 
becoming available (such as imaging, -omics, 
clinical data, data gathered from wearable devices), 
but the advent of new experimental and patient-
derived models have also created richer and more 
translation-relevant datasets, alongside algorithms 
that help combine, contextualise, and draw insight 
from sparse, fragmented, structured & unstructured 
datasets (from publications to in vitro data). A more 
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lack of, clinical feedback loops to test and validate 
AI approaches – although experts have speculated 
this need might change with the advent of rapid 
mRNA sequence generation.

When it comes to antibody design and 
optimisation use cases, a large proportion of AI 
efforts have been taking place in pharmaceutical 
companies and ‘AI-first’ biotechs compared to 
academia, which is reflected in fewer publication 
data on the same. However, publication output of 
the last few years suggests an acceleration of AI, 
with a focus on sequence-structure determination 
(e.g., by building on the capabilities within 
Alphafold), in vitro library screening and antigen-
antibody binding prediction. Other use cases further 
down the antibody value chain focus on the 
multiparameter optimisation of the antibody ahead 
of preclinical studies. These efforts require extensive 
datasets, which historically have resided in 
pharmaceutical companies and contract research 
organisations (CROs) and not always available 
publicly, which perhaps explains the more limited 
literature in this space.

We are starting to see a bigger AI impact on 
antibody design. AI makes it easier to make 
and screen 10k antibody molecules.

Senior Vice President, ‘AI-first’ biotech

AI activity in small molecule design and 
optimisation is widespread across the drug 
discovery community, driven by the availability of 
well-validated tools, such as those for AI-driven 
screening and design, which are widely available 
and being applied especially in industry. There are, 
however, a number of important nuances. For 
example, there is relatively limited literature about 
the application of AI to ligand synthesisability. In 
contrast, in virtual screening, there are more 
publications and a wide variety of open-source AI 
tools available (e.g., VirtualFlow, PyRMD) [17], [18]. 
Small molecule AI approaches have seen substantial 
attention from the pharmaceutical industry, where 
many companies are deploying their own solutions, 
although less information on this progress is publicly 
available [19]. 

For vaccines design and optimisation use cases 
we see a limited number of publications. Many 
academics participating in our research mention a 
lack of clinical serology data for tool development as 
a primary hindrance, especially for models 
identifying optimal antigen sequences and 
predicting immunogenicity. One area where the use 
of clinical serology data is more commonplace for 
identifying immunogenic antigens is within the 
influenza field which has led to the development of 
models, such as FluLeap, which can accurately 
categorise novel influenza viruses as either avian or 
human [20]. Efforts are also underway to explore 
immunogenicity in more detail – the Human 
Immunome Project, for example, aims to better 
understand the molecular basis of immunity through 
the combination of AI and systems biology 
techniques (see Section 8 for further detail) [21]. This 
could be an inflection point for the development of 
epitope selection, prediction and binding tools, 
resulting in significant acceleration of the discovery 
of new vaccines and other therapeutics. Many 
academics also highlighted the need for, and current 

It is very difficult to build a generalisable model 
for ADME / Toxicity because of the 
idiosyncratic nature of the underlying data. 
And where generalisable models do exist, 
teams need to be well versed in evaluating the 
outputs of predictive tools to ensure we are 
not over interpreting results.

CEO, ‘AI-first’ biotech 

Toxicity models broadly fall into one of two 
categories; either they predict the impact of 
drugs on specific toxicity pathways (e.g., 
CYP340 for liver toxicity) or they help identify 
idiosyncratic toxicity. The former requires highly 
specific models and training data, the latter may 
simply not be detectable with the model 
capabilities we have today.

Lead Developer, Scientific AI Software 

For safety and toxicity, the story is somewhat 
different. Activity in academia is currently limited by 
the lack of data in the public domain on which to 
train models, and efforts to model broad toxicity 
impacts are few and far between. However, some 
concentrated areas of activity exist, such as those 
related to pharmacokinetics and pharmacodynamics 
simulation, or image analysis from patient biopsy 

samples. There are also increasing efforts in 
quantitative systems pharmacology (QSP) that may 
further increase momentum going forward, spurred 
by the recent FDA Modernisation Act 2.0 in the 
United States, which includes a provision to allow 
pre-clinical approval without the need for an animal 
model evidence base [16]. 

Applications of AI across different 
Therapeutic Areas
When considering the use of AI across different 
therapeutic areas we see a similar trend, with most 
publications focusing on therapeutic areas that are 
both data-rich and commercially attractive, such as 
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Figure 6 – Publications on AI in drug discovery, by use case family and by year

In contrast, other disease areas such as mental 
health have been comparatively under-served by AI. 
These disease areas often lack high-quality data 
(e.g., consistent coding/patient phenotyping) with 
sufficient dimensionality and depth from which to 
train models, and in some cases, also lack an 
understanding of the biological mechanisms that 
cause the underlying disease.

We focus our algorithms on the same 
therapeutic areas because we are forced to 
compare new methodologies with a technique 
from a seminal paper a decade ago. And this is 
worse in the field of AI – it’s hard to tell the 
quality of papers when they are being 
published at such a fast rate, so people anchor 
even more heavily on historic ones.

Bioinformatics Professor, Academia
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oncology (37%) and COVID-19 (23%). Infectious 
disease (12%) is also well-represented in literature 
but concentrated in diseases where significant 
commercial incentives exist or where philanthropic 
funding is available. As a result, the majority of 
publications in infectious disease cover malaria, 
tuberculosis, and HIV, and less than 1% of literature 
focuses on other infectious diseases including 
neglected tropical diseases (NTDs). 

Many experts we interviewed highlighted that 
research culture and incentives may further 
concentrate efforts in existing areas as it is easier to 
document progress in improving an AI tool where one 
already exists as a proof point. This ultimately limits 
the development of tools to within a small sub-set of 
therapeutic areas where efforts already exist today.



A breadth and depth of metadata is required to 
better understand disease drivers. Within 
depression, for example, not only is it pertinent 
to understand genetic predispositions, but 
factors such as alcohol consumption, sleep 
schedules and frequency of social interactions 
should also be considered.

Senior Vice President Business Strategy, 
‘AI-first’ biotech

Using our platform to improve global health 
would be a fantastic end result, but it’s just not 
feasible from an economic perspective in a 
cash-poor, early-stage start-up.

Senior Executive, ‘AI-first’ biotech

Figure 7 – Publications on AI in drug discovery, by therapeutic area

1. Gastrointestinal, Immunology, Respiratory
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An analysis of the pipelines of ‘AI-first’ biotech 
companies shows a similar pattern. The vast 
majority of assets in these pipelines are that of small 
molecules, although vaccines and antibodies have 
been growing strongly (see Figure 8). Furthermore, 
their assets are focused on data-rich, commercially 
tractable therapeutic areas, such as oncology and 
neurology. 

Our results also show that therapeutic area focus is 
often influenced by the need to manage the pipeline 
and balance risk, especially in the case of ‘AI-first’ 
biotechs. In the early stages of their evolution, when 
resources are often limited, many ‘AI-first’ biotechs 
focus on commercially attractive therapeutic areas 
and indications. Later in their evolution, when 
companies are better established and funded, many 
‘AI-first’ biotechs expand to other therapeutic areas.
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Figure 8 – Pipeline and therapeutic area focus of ‘AI-first’ biotechs 

1. Numbers are one-off and not an ongoing trend

2. Gastrointestinal, Immunology, Respiratory
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Investment in AI in drug discovery
The investment pattern from private funders follows a 
similar trend as seen above. Across the approximately 
200 ‘AI-first’ biotechs identified (see appendix section 
10.4), analysis showed a total investment of over $18Bn 
over the past ~10 years. However, this has been highly 
focussed, with 60% of total investment concentrated 
within the top 20-funded ‘AI-first’ biotechs. Within this 
top group, 80% focus on understanding disease and 
small molecule use case families, with limited signs of 
expansion into vaccines or antibodies so far. 

Please not that with regards to investment, it is not easy 
to distinguish cause and effect. Investment may be going 
into areas where investors see the greatest transformative 
and commercial potential for AI. Alternatively, the influx of 
investment itself may catalyse the development of 
technologies so that well-funded areas mature more rapidly. 

Funding is what limits ‘AI-first’ biotechs to a 
specific corner. Funders want to see return 
on their investment and some use cases are 
more promising than others.

Head of R&D, Pharmaceutical company

Figure 9 – Investment in ‘AI-first’ biotech companies 

1. Includes IPO funding where relevant

Note: Where companies operate across multiple use cases, funding has been split equally across the use 
cases and the companies have been double counted

Summary: Current state of AI in  
drug discovery
Whilst there is no doubt that the innovation and 
investment activity within the AI drug discovery space 
has been growing rapidly over the last five years, this 
growth has been uneven across use cases. Progress 
has been rapid in areas where data is abundant and 
publicly available, and industry efforts are often skewed 
towards commercially tractable, well validated, or data-
rich therapeutic areas. In contrast, there has been much 
less progress in areas where data availability is limited, 
or areas which are commercially less attractive and 
therefore less likely to capture investment. 
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5.2. Adoption of AI in DD

AI has propagated into every area of our 
research and development.

CEO, ‘AI-first’ biotech

Do we really want to spend our time and 
money to develop algorithms when we can 
be a fast follower instead? The latter is our 
approach to adopting AI.

Head of R&D AI, Pharmaceutical company

The current adoption of AI is primarily taking place 
within ‘AI-first’ biotech players, with academia and 
pharmaceutical companies showing lower adoption. 
Overall, HICs and China show higher adoption rates 
compared to LMICs. This is perhaps not surprising; 
‘AI-first’ biotech players structure their organisations 
to embed AI across their workflows to maximise its 
benefits, and this has led to the development of 
extensive pipelines of therapeutics and vaccines, 
discovered in an AI-enabled manner. ‘AI-first’ 
biotechs are also increasingly building scale through 
mergers and acquisition activity, for example 
Schrodinger’s acquisition of XTAL Biostructures to 
create internal laboratory capabilities to generate 
data to feed models; and Valo Health’s acquisition of 
the protein therapeutics player Courier to enable 
expansion across the drug discovery value chain 
(away from their historic focus on understanding 
disease and small molecules use cases).

In contrast, in more established organisations, 
ingrained processes, working practices, and 
functional silos can limit adoption of AI. Our analysis 
indicates that embedding AI solutions in these 
organisations requires extensive change 
management, and cross-functional collaboration to 
establish new, AI-powered working practices.

Pharmaceutical companies already have 
trained skill base in one area, so embedding 
AI tools within their standard workflow would 
require a huge amount of retraining and 
rehiring. So, they are sceptical – they see the 
value of AI, but they are dipping their toes in 
before they commit fully.

Scientist, ‘AI-first’ biotech

Through expert interviews and an online survey, we 
assessed the adoption of AI technologies in the drug 
discovery space today. Despite the promise of AI within 
drug discovery, our analysis shows that, overall, AI is not 
routinely adopted across use case families and sectors.

Adoption of AI is highest within the Understanding 
disease and Small Molecule use case families, likely 
driven by the historic precedence of activity in these 
fields (as described in section 5.1), and owing to better 
availability of established tools, open source or 
otherwise. However, it should be noted that even 
within these use cases, adoption is uneven and there 
is much more that could be done to further the 
application of technologies in the field.

There are quick wins in Small Molecules; we 
are setting AI on a problem that is easiest to 
solve initially.

Vice President, ‘AI-first’ biotech

Vaccines use cases have the lowest adoption 
amongst users in our survey. It should be noted, 
however, that in some vaccine discovery organisations, 
AI has seen much greater adoption, with some experts 
calling out the COVID-19 pandemic as a turning point 
for the use of AI across the field. This may reflect a 
distinct evolution of the field, in which some 
pharmaceutical companies have taken a leading role in 
driving the use of AI. Recent efforts, such as vaccine 
pandemic preparedness initiatives, may help address 
some of these disparities in roles between industry and 
the rest of the field [22], [23]. 

Whilst these barriers present challenges for the 
deployment of AI in established R&D organisations, 
such as large pharmaceutical companies, many are 
beginning to experiment with AI through 
partnerships with ‘AI-first’ biotechs. Other 
pharmaceutical companies are investing significantly 
to develop and deploy AI tools internally [24]. If 
successful, these initial experiments can then be 
scaled up – as exemplified by the long-term 
collaboration between AstraZeneca and Benevolent 
AI, which has resulted in the identification of five 
novel targets that have entered the AstraZeneca 
portfolio since 2019 [12].



Figure 10 – Adoption of AI in drug discovery across use cases, HICs and LMICs

Avg. Score refers to average adoption score. N refers to number of respondents. 
Survey Question: “How would you characterise your organisation’s usage of AI 
tools to support the use case family?” Survey Options: 1. Don’t use AI 2. Some 
limited experimentation is occurring, but AI tools aren’t routinely used. 3. AI tools 
used on an ad-hoc basis for specific processes where it is valuable, AI tools aren’t 

a part of workflow. 4. AI tools used commonly for many of the critical processes 
and are part of workflow. 5. AI tools used as a standard for most of the critical 
processes and are a standard part of workflow. Note: Respondents may overlap 
between use cases and can only choose one option per use case
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Figure 11 – Adoption of AI in drug discovery, by type of organisation

Avg. Score refers to average adoption score. N refers to number of respondents. 
Survey Question: “How would you characterise your organisation’s usage of AI 
tools to support the use case family?” Survey Options: 1. Don’t use AI 2. Some 
limited experimentation is occurring, but AI tools aren’t routinely used. 3. AI tools 
used on an ad-hoc basis for specific processes where it is valuable, AI tools aren’t 

a part of workflow. 4. AI tools used commonly for many of the critical processes 
and are part of workflow. 5. AI tools used as a standard for most of the critical 
processes and are a standard part of workflow. Note: Respondents may overlap 
across use cases and can only choose one option per use case, average use case 
option per respondent was used to determine usage by sector

Amongst the big players, everyone is trying 
to jump on board quickly one way or another. 
We are using external partnerships to extend 
our capabilities.

Scientist, Vaccines, Pharmaceutical company

Across the pharmaceutical industry, large numbers 
of partnerships can be seen. In the last 5 years, the 
top 20 pharmaceutical companies have engaged in 
at least 55 relevant partnerships which have, to 
date, disclosed over $770M in upfront payments, 
with a potential future value of at least $38B. In both 
the ‘AI-first’ biotech and large pharmaceutical 
settings, the formation of these partnerships, and in 
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such numbers, underscores the private sector 
appetite for deploying these technologies at scale. 
Whilst industry-to-industry partnerships may 
dominate in HIC settings, one can also envision 
other types and networks of partnerships, for 
example between research and industry, that could 
bring the value of AI to other settings, especially 
those which are more resource-constrained.

875% 25% 4.33023% 27%33% 3%13% 2.4

3432% 26%21% 12%9% 2.8 2642% 27% 8%12% 2.312%

Academia

Industry

'AI-�rst' Biotechs

Pharmaceutical 
Companies and Biotechs

Deep-dive into 
industry

DistributionAvg. ScoreDistribution Avg. Score NN

1- None 2- Limited 3- Occasional 4- Substantial 5- Extensive
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5.3. Emerging value proofs 

While our survey results highlighted the differences in 
adoption of AI use cases across the industry today, it 
also highlighted the broad agreement in the potential 
for AI to transform drug discovery in the next 3-5 years.

As discussed earlier, to determine the potential impact 
of deploying AI in drug discovery, a high-level analysis 
was conducted which highlighted three primary value 
drivers (i) time and cost savings, (ii) increased 
probability of success, and (iii) novelty of both the 
molecular target and optimised therapeutic agent [9]. 

Despite the existence of numerous, publicly reported 
partnerships, projects and increasingly pipeline assets 
(see Figure 12 for selected examples), many of the 
experts we interviewed and surveyed argue that the 
value proofs of AI in drug discovery so far are point 
successes. The large number of on-going programs 
will mature in the coming years to add data points to 
evaluate the true impact of the technology.

84%
Of current users expect 
AI to drive significant/ 
transformative impact 
in drug discovery over 

the next 5 years

70%
Of current non-users 

expect AI to drive 
significant/ 

transformative impact 
in drug discovery over 

the next 5 years

Survey Question: “How valuable do you expect the 
future application of AI to support use case family 
to be? The term future refers to the next 5 years” 
Survey Options: 1. None, 2. Limited - AI only 
makes modest improvements 3. Some – AI gives 
small incremental impact 4. Significant – AI 
provides a large positive impact, 5. Transformative 
– AI helps achieve outcomes that were not 
possible before. Note: Respondents can only 
select one option for each use case. 

There is undoubtedly a lot of promise for AI in 
drug and vaccine discovery, but there’s also an 
awful lot of hype – AI has been talked about for 
the last decade but the challenges facing R&D 
haven’t changed that much yet.

Head of AI, Pharmaceutical company

We need examples to show that AI in drug 
discovery is broadly applicable, and not just 
within one particular model or therapeutic.

Professor of Bioinformatics, Academia 

On time and cost; many players across the ecosystem 
are claiming substantially faster timelines and reduced 
costs (e.g., driven by fewer compounds synthesised), 
but sceptics have yet to see the externally verifiable 
impacts [25], [26], although competitions like CACHE 
will help address this [27]. Early analysis has shown 
that select AI-partnerships/AI derived assets took on 
average 4 years to reach the clinic versus 5-7 yrs in 
benchmarked timelines [28], [29]. COVID-19 efforts in 
repurposing for small molecule drugs and for antibody 
discovery also showed dramatic acceleration where AI 
played a part, albeit in a pandemic-accelerated 
research and regulatory environment (Figure 12).

On novelty and probability of success, an increasing 
maturation of proof points in the coming years is 
expected from the 73 AI-derived clinical pipeline 
assets identified today across Small Molecules, 
Antibodies and Vaccines portfolios. 

COVID-19 treatments aside, initial indications of the 
clinical performance of assets are also emerging – 
from RLY-4008 (selective-FGFR2 reversible inhibitor 
with a novel mechanism of action) and EVX-01 
(peptide-based neoantigen) which both showed 
superior ORR versus controls in Phase 1/2a studies; to 
NDI-034858 (selective TYK2 allosteric inhibitor) which 
read out positive Phase 2b results by Takeda (acquired 
for $4B from Nimbus Therapeutics) [8], [30], [31] . 

These are singular point examples of early clinical 
successes where we would also expect several failures 
across these large portfolios. A more thorough analysis 
in coming years will be needed to truly evaluate the 
impact of AI on discovery. 



Figure 12 – Selected value-proofs for AI-enabled drug discovery

1, ORR=Overall response rate 
Sources: [32, 33, 8, 34, 35, 30, 36]

Structure Activity Relationship Prediction - 
RLAY-4008 for cholangiocarcinoma

Sep 
'16

Research to identify a FGFR2
inhibitor started
Relay Therapeutics develops novel 
FGFR2-speci�c inhibitor RLY-4008 by 
analysing the dynamic balance of protein 
conformations using its AI platform

48
 m

on
th

s

Sep 
'20

Clinical trials started
RLAY-4008 starts Phase I/2 study

16
 m

on
th

s

Jan 
'22

FDA granted Orphan Drug Designation 
FDA grants RLY-4008 orphan drug designation 
for the treatment of cholangiocarcinoma

8 
m

on
th

s

Sep 
'22

Interim clinical data published
88% ORR1 at phase 2 dose level

Value Drivers

Time: 4 years from Discovery to Clinical Trial
Cost: Not publicly available 
PoS: 45-65% higher ORR compared to peers  
Novelty: New mechanism of action

AI-enabled Selectivity Improvement- NDI-034858 
for moderate-to-severe psoriasis 

Dec 
'16

Research to identify a candidate for the 
JH2 domain of TYK2 started
Nimbus Therapeutics leverages 
Schrodinger’s FEP+ physics-based model 
to evaluate 13k molecules and design 
superior selectivity across the majority of 
the kinome 

56
 m

on
th

s
Aug 
'21

Clinical trials entered
NDI-034858 enters Phase 2b clinical trials; 
a 75% improvement in skin lesions is 
observed compared to placebo at 12 weeks

16
 m

on
th

s

Dec 
'22

Takeda acquires NDI-034858 
Takeda enters agreement to acquire 
NDI-034858 from Nimbus Therapeutics 
for ~$6B

Time: 4.5 years from Discovery to Clinical Trial
Cost: 300-500 molecules synthesised compared to 
5-10k in traditional work�ows
PoS: 75% improvement in skin lesions and 
expected superior selectivity 
Novelty: Novel allosteric inhibitor of TYK2

Neoantigen prediction- EVX-01 for 
metastatic melanoma

Dec
'17

Research to identify a neoantigen 
immunotherapy 
Evaxion deploys their proprietary AI-based 
PIONEER platform to identify neoantigens 
most likely to elicit strong T-cell responses 
and anti-tumour effects

13
 m

on
th

s

Jan'
19

Clinical trials started
EVX-01 starts Phase I study

30
 m

on
th

s

Jul
'21

Phase 1 interim data announced
EVX-01 demonstrates ORR of 67% in 
conjunction with anti-PD-1 treatment vs. 
historical data of 40% with anti-PD-1 
treatment alone

3 
m

on
th

s

Oct 
'21

Merck collaboration announced
Enters clinical trial collaboration and supply 
agreement with Merck to evaluate EV-01 
with Merck's anti-PD-1 therapy

Time: 1 year from Discovery to Clinical Trial
Cost: Not publicly available 
PoS: ~30% higher ORR compared to peers 
Novelty: Personalised medicine approach
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Figure 12 – Selected value-proofs for AI-enabled drug discovery (Cont’d)

Drug Repurposing – Baricitinib for 
severe COVID-19

Feb 
'20

Research on existing and approved drugs 
initiated
Baricitinib, an existing Eli Lilly drug, is hypothe-
sised to be a leading therapeutic for COVID-19 
by Benevolent AI's knowledge graph technology3 

m
on

th
s

May 
'20

Clinical trials entered
Baricitinib enters control trial with US NIAID

6 
m

on
th

s

Nov 
'20

FDA EUA granted 
FDA grants Baricitinib Emergency Use 
Authorization (EUA)

5 
m

on
th

s

Apr
'21

Trial results obtained
Phase III trial results from Eli Lilly show 38% 
reduction in mortality, the most signi�cant 
clinical effect to date

13
 m

on
th

s

May
'22

FDA full approval granted
Baricitinib approved for the treatment of 
COVID-19

Value Drivers

Time: 2 months from Discovery to Clinical Trial
Cost: Not publicly available 
PoS: n/a1   
Novelty: New antiviral mechanism 

Antibody Design and Optimisation – 
Bamlanivimab for mild/moderate COVID-19

Mar
'20

Research to identify a neutralising human 
monoclonal antibody started
Eli Lilly, in partnership with AbCellera, 
begins mAb development using 
convalescent plasma from a COVID-19 
patient. Computational methods narrows 
down ~2000 potential candidates to a �nal 
24, from which bamlanivimab is selected 
for its 10x-greater neutralisation capacity

3 
m

on
th

s

Jun 
'20

Clinical trials entered
Bamlanivimab enters Phase II trials

5 
m

on
th

s

Nov
'20

FDA EUA granted
Bamlanivimab becomes the �rst 
mAb to receive FDA EUA for mild 
COVID-19

Time: 3 months from Discovery to Clinical Trial
Cost: Not publicly available 
PoS: n/a1 
Novelty: n/a
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The discovery of bamlanivimab was cruical 
during the pandemic. I think in the future, AI will 
play a large role in curing diseases.

Vice President, ‘AI-first’ biotech

Preliminary clinical data suggests that 
RLY-4008 is more effective than alternative 
treatments currently available. AI is helping 
us innovate and find better solutions.

Senior Vice President, ‘AI-first’ biotech 

It took less than 3 months for Baricitinib to 
enter clinical trials. There’s no way this would’ve 
been possible in such a short time frame 
without AI.

CEO, ‘AI-first’ biotech 

1. PoS for COVID examples are not comparable to peers 
Sources: [37,40]
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Figure 13 – Potential impact of AI on time and cost of drug discovery

1. Adjusted based on expert input Source: Publication [29]

BOX 1: Value modelling
To catalogue the potential impact of AI in drug discovery, 
a value model was built to assess the potential 
implications from adopting AI technologies, especially for 
resource-limited settings and/or commercially less 
attractive diseases. 

For simplicity, the model focusses on the time and cost 
impact of AI within small molecules, where interviews, 
publications and emerging proof points were used to 
triangulate potential impacts across the discovery value 
chain against an adjusted published baseline [29]. 

Given that drug discovery programs vary enormously in 
scale and complexity and there is no “one size fits all”, 3 
scenarios were assessed at a high level:

• Scenario 1: New molecule for a difficult or poorly 
understood target

• Scenario 2: Molecule from existing chemical series for 
well understood target

• Scenario 3: Repurposing of existing molecule for a 
target

To evaluate the potential of AI across these scenarios 
impacts were triangulated from available value proofs, 
publications and expert interviews. See appendix section 
10.5 for details of how these scenarios were modelled 
and the high-level assumptions used.

Across all scenarios, the model suggests that AI has the 
potential to materially reduce timelines from discovery to 
the preclinical candidate stage (from 2-3 years in 
repurposing or with well validated targets), and 
significantly reduce costs, dropping as low as $10-15M in 
Scenario 3.

This is driven by faster and better hypothesis generation 
in target identification and validation for Scenarios 1 and 
3, as well as improved molecule optimisation through 
fewer design-make-test cycles. This latter impact is 
particularly improved in Scenario 2, when there is 
greater information on the target, prior chemical and 
assay history (e.g., kinase inhibitors) that can act as 
starting points for quicker lead optimisation efforts. 

It remains to be seen to what extent these benefits can be 
realised in drug discovery programmes. However, even if 
only some of these benefits materialise, it could represent 
a fundamental reshaping of the economics of discovery. 
This could allow industry to take more “shots on goal” and 
thereby increase success rates of discovery programmes. 
Also, it could enable LMIC discovery teams to pursue 
preclinical programmes against diseases which are 
currently economically not feasible.

Scenario

1
New molecule for 
difficult or poorly 
understood target 

2
Molecule from 
existing chemical 
series for well 
understood target 

3
Repurposing of 
existing molecule 
for target 

Baseline¹

AI - enabled 
workflow

AI impact

Baseline¹

AI - enabled 
workflow

Baseline¹

AI - enabled 
workflow

Time to PCC (y)

8 - 11

5 - 8

3 - 5

35 - 55

5 - 7 25 - 4035-40% 25-30% 

40-50% 

30-40% 30-50% 

40-50% 3 - 4 15 - 20

2 - 3 10 - 15

25 - 40

15 - 30

Cost to PCC ($M)

·  AI use cases accelerate target identification and validation 
e.g., protein dynamics modeling and (-omics) mining 

·  Some impact on hit to lead and lead optimisation 
phases due to faster screening 

·  High AI impact on hit to lead and lead optimisation 
phases compared to other scenarios since well 
understood target often has lots of existing data on the 
target, prior chemical and assay history

·  AI use cases accelerate discovery of novel 
target-molecule relationship e.g. knowledge graphs

·  AI also accelerates preclinical phase through use of 
predictive models on existing clinical data
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t

6. Key barriers 
to adoption



Alongside emerging value proofs and increasing 
appetite to use AI in the future, our interviews and 
survey identified several barriers that may be limiting 

• Tools 

• Capabilities. 

current adoption of AI in drug discovery. These 
barriers can be grouped into 4 dimensions, defined 
in Box 2: 

• Trust

• Data
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BOX 2: Barrier definitions 

Trust: Trust barriers typically stem from scepticism or 
a lack of understanding of the potential and maturity 
of AI tools in drug discovery. This can inhibit 
investment and adoption of these technologies by 
practitioners and leaders across the industry. On a 
smaller scale, it also refers to the lack of trust users 
feel with AI-derived outputs. Specifically, some AI 
algorithms are perceived as “black boxes” without a 
full understanding of how the algorithms work, 
including their strengths and limitations. 

Data: Data barriers refers to the challenges of 
accessing or using raw datasets required to train and 
run AI models for specific tasks. Many of the experts 
we interviewed and surveyed highlighted the need for 
deep, broad datasets (often at the disease area level 
depending on the use case). Similarly, being able to 
access data for model training is critical for 
developing AI solutions and can vary substantially 
across data types and industry players. Lastly, some 
experts also called out a need for common data 
standards or formats to enable greater interoperability 
of data sets to allow AI models to run at scale (and 
not just for bespoke analysis). 

Tools: In the context of AI in drug discovery, tool 
barriers refer to the lack of maturity of tools to derive 
accurate predictions, and to the accessibility and 
usability of tools (e.g., open source/licensed or simple 
interfaces). This also includes ways of deploying AI 
tools, either through integrations with existing 
workflow solutions, or through standardised 
deployment across research settings (e.g., protein 
families, disease types etc). 

Capabilities: Capability barriers refer to the skillsets 
and infrastructure needed to conduct AI in drug 
discovery. Typically, this work requires 
multidisciplinary skillsets which combine deep drug 
discovery expertise as well as data science and AI 
capabilities. This can be achieved through cross-
functional teaming within institutions, but also 
through partnerships between different organisations. 
In terms of infrastructure, access to large-scale 
computing power, a stable cloud connection, and 
access to wet labs are usually required. Lastly, 
education and training for drug discovery 
practitioners are important for growing AI capabilities. 



Figure 14 – Overview of barriers limiting the adoption of AI in drug discovery 

Trust
Varying levels of trust and understanding on the value of AI in drug 

discovery, thereby limiting support of adoption

AI Enablers

Data

Tools

Capabilities

Maturity

Insufficient breadth and depth of data for 
speci�c therapeutic areas , use cases, and 
population sets

Lack of suitable tools (e.g., user-friendly, 
energy-ef�cient) for speci�c use cases and 
therapeutic areas 

Insufficient drug discovery resources (e.g., 
labs, computing power) and relevant AI 
expertise in speci�c geographies and sectors

Access

Fragmented datasets in public domain; 
limited access to privately-held proprietary data

Lack of access to best-in-class tools, even 
in licensed models

Silos of resources and knowledge within 
sectors, functions and geographies

Standardisation

Data collected in inconsistent formats 
and levels of granularity across geographies 
and industries for speci�c use cases and 
therapeutic areas 

Algorithms not readily interoperable 
with existing work�ows / other toolkits or 
comparable across diseases or use cases 

Lack of standardised skillsets (e.g., training 
curriculum) and approaches used across
geographies and sectors
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Barriers relating to the lack of 
trust in AI drug discovery
Our survey and interviews highlighted a wide 
spectrum of trust and understanding of AI in 
drug discovery. 

Whilst many drug discovery experts believe in the 
potential of AI in the future, some opinion leaders 
– including policy makers, funders, and senior 
academic and industrial leaders – remain sceptical 
about the near-term impact of AI in drug 
discovery. 

AI is the future – it will 
help us explore areas 
that have never been 
explored before. One 
day AI will help us 
understand biology so 
deeply that we can form 
new scienti�c laws and 
drug design principles.

Head of Data and 
Platform Strategy,

‘AI-first’ biotech

AI is somewhat valuable. 
In our work, AI has 
helped make a lot of 
molecules synthesisable 
faster & cheaper.

Translational
Scientist, Academia

It's too early to recognize 
the true impact of AI – we 
will only be able to see 
the true impact once we 
can see the productivity 
over time.

Deputy Director, Global 
Health, Non-profit 

Organisation

AI is currently only 
used for solving simple 
problems. The InSilico 
screen would only have 
had a 4% failure rate, 
even without AI.

Computational 
Biologist,

Research Institute 

AI is a new hype – 
investors buy into the 
desire to be hip, cash is 
raised, Pharma cos do 
deals to be in the news. 
There's lots of noise in 
this �eld but it has not 
been proven yet.

Chief Executive,
Data Consortium

Believers Sceptics
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This scepticism can present challenges, especially 
in LMICs, where there is less familiarity of the field, 
compounded by the lack of awareness of relevant 
tools and industry proof points from which to 
challenge the perception of policy makers.
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Data needs to be treated and managed like a 
strategic asset. We have a lot of data in-
house but it is not managed well. Our data 
needs to be cleaned before it can be used to 
feed AI models.

Senior Director, Pharmaceutical company

Academics are very good at generating data 
(proteomics, transcriptomics etc.) but it is not 
yet done consistently in a way that can be 
used by AI models.

Research Scientist, Biotech

It’s important to understand the limitations of 
AI. In silico predictions are only as good as 
the in vivo/vitro data they are trained on. 

Manager, Gene therapy biotech

When you think about Infectious Diseases – 
the strain of the virus, the cellular growth 
model, the time of data collection – all have a 
massive impact on the data and these are 
often values that aren’t captured.

Vice President, ‘AI-first’ biotech

Barriers relating to data required 
for AI in drug discovery 
Data related barriers were those most frequently cited 
by experts across all industries and therapeutic areas. 
These barriers can be broadly categorised into three 
themes - (i) lack of suitable datasets to feed AI 
models, (ii) lack of access to proprietary databases, 
and (iii) limited interoperability of existing datasets. ii.  Lack of access to proprietary databases

Proprietary datasets, on the other hand, are often 
sufficiently rich but are typically inaccessible to the 
broader field. In our interviews and survey, several 
experts stated that proprietary datasets often contain 
high-quality data for a given use case (e.g., use cases 
pertaining to large-scale small molecule synthesis or 
safety and toxicity use cases), but lack of access to 
these datasets can significantly hinder the 
development of tools within academia. As a result, tool 
developed in an academic setting, using publicly 
available data, are sometimes less accurate than they 
could otherwise be. This challenge can be addressed 
in several ways –  Proprietary datasets can be 
replicated in the public domain; however, this can be 
costly and time consuming. Alternatively, federated 
learning approaches can be used on proprietary data. 
For example, the MELLODDY platform in the small 
molecules space powered by Owkin’s Substra, and 
LHASA’s Effiris model have been deployed to enable 
learning across proprietary datasets with the end goal 
of building a more accurate algorithm, though these 
types of initiatives are currently relatively rare [41], [42]. 

iii.  Limited interoperability of existing datasets

Making multiple datasets interoperable (i.e., being 
able to use these datasets on different systems, or in 
combination with other data) is a complex and costly 
task, particularly for less-experienced teams 
deploying open-source solutions. Inconsistencies in 
data structure, metadata and normalisation exist in 
many databases, and precludes both the easy 

In our interviews and survey, some AI experts 
mentioned initiatives that are beginning to tackle this 
need for more standardised and interoperable data 
through advocating for consistent data standards 
(e.g., FAIR) or supporting minimum metadata 
requirements for the publishing of data within a 
database (e.g., PRIDE). These standards have yet to 
be universally agreed, implemented, or adopted, but 
point to a strong appetite from industry players to 
support greater collaboration on data.

i.  Lack of suitable datasets to feed AI models

Where open-source datasets exist today, many 
experts we interviewed highlighted that depth, 
dimensionality, and scale are often too limited for the 
application of AI to better characterise diseases (e.g., 
missing metadata on cell culture conditions; or assay 
conditions beyond just experimental outcomes). There 
are increasing efforts to build out these multi-modal 
datasets. Ochre Bio, for example, are leveraging a 
deep phenotyping approach for liver disease using 
multi-omics, imaging and novel translational models 
using livers unsuitable for transplant. However, this 
type of approach to understanding disease is highly 
specific, often requiring patient samples or novel 
experimental approaches to develop and test 
hypotheses – and this can create challenges when 
considering the expansion of these approaches across 
disease types, or the creation of scalable open-source 
algorithms.

application of AI techniques, and the amalgamation 
of data to drive better target-disease hypotheses. For 
example, the Cancer Genome Atlas Project (TCGA) 
and the Catalogue of Somatic Mutations in Cancer 
(COSMIC) databases could provide significant value 
when used simultaneously, but the lack of consistent 
data standards renders their integration complex, 
especially for academics [43]. 



Figure 15 – Principles of  
FAIR data

Source: Website [44]

Barriers relating to AI tools in drug 
discovery
Limitations of existing AI tools was cited as another 
hinderance to adoption, with barriers relating to the 
(i) lack of mature tools (ii) limited tool usability, and 
(iii) lack of access to relevant tools most frequently 
mentioned.

i.  Lack of mature tools 

For tool maturity, experts noted that the 
development of novel AI tools can often be hindered 
by an absence of underlying datasets required to 
train the algorithms. This is particularly pertinent in 
the infectious disease space where robust tools for 
predicting immunogenicity of pathogenic proteins is 
often lacking. For example, several experts cited the 
need for algorithms to determine the impact of 
bacterial protein glycosylation on major 
histocompatibility complex (MHC) binding, but 
limited large-scale data exists today from which this 
can be achieved.

Data you feed into a model is the most 
important determinant of outcome and 
neglected tropical diseases has always been 
behind other therapeutic areas for data 
availability. It’s frustrating!

Infectious Disease Investigator, LMIC 

ii.  Limited tool usability 

The usability of AI tools in drug discovery, especially 
open-source tools, was also cited as a major barrier. 
Interviews highlighted that open-source tools are 
often not developed with wide-spread use in mind, 
and in some cases not regularly maintained once 
developed (often due to cost). As a result, some AI 

Unlocking the potential of AI in Drug Discovery | 39

We are massively limiting ourselves if these 
tools can only be used by academics or 
AI-specialists – students, doctors, industry 
professionals should all be able to play a part –
we can’t expect everyone to have a PhD in AI.

There is no incentive for academics to make 
usable open-source tools that are also 
maintained.

Lots of ‘AI-first’ biotechs are producing tools 
but they are not accessible; they are like a 
black box – we put data in, they give us data 
back – but without understanding what the 
tool is doing, it’s difficult to convince anyone 
to trust the findings.

Head of AI Platforms, ‘AI-First’ biotech

Professor of Bioinformatics, Academia 

Head of Drug and Vaccine Discovery, Academia

F A I R

Findable
(Meta)data is referenced with unique and 
consistent identi�ers (e.g., DOIs), and can be 
discovered by both humans and 
computers (e.g., by exposing key words to 
search engines) 

Accessible
Whilst the data does not have to be openly 
available to everyone, information on how the 
data could be retrieved must be available 

Interoperable
Data can be exchanged and used across 
different applications, systems and 
geographies using metadata standards, 
standard ontologies and standard structures 

Reusable
(Meta)data is well described such that it can 
be replicated or combined with other 
datasets; encourages collaboration and 
avoids duplication of efforts by allowing 
assessment and validation of results 

tools lack simple user interfaces, cannot easily 
integrate into existing workflows, and are rarely 
updated with new features or bug fixes.

Whilst industry players can address the challenges 
of open-source tools – by either purchasing 
commercial tools or deploying internal teams to 
build upon existing open-source tools – academics, 
particularly those from LMIC settings, often struggle 
to overcome these challenges. In our interviews, 
many LMIC researchers highlighted a particular 
need for small molecule drug discovery programs in 



Figure 16 – Specific barriers to the adoption of AI, observed by HICs and LMICs

Survey Question: “What are the current barriers to increasing the usage of AI tools in drug discovery?”  
Survey Options: Shown above  
Note: Respondents can select up to 3 options
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Licenses deemed “good value” in the western 
world, even for commonplace tools such as the 
Microsoft Office suite, are often completely 
unaffordable to us.

Head of AntiMicrobial Agents Unit, LMIC 

Pain points observed in HICs (n=66) 

Data: Availability of suf�cient / high quality data 42

Capabilities: Availability of suitable staff   24

Capabilities: Lack of understanding of AI 22

Tools: Availability of appropriate high-quality tool 17

Data: Expense of data 14

Capabilities: Expense of recruiting suitable staff 11

Tools: Lack of trust in AI tools 10

Other: Regulatory or compliance challenges 8

Data: Lack of data policy/regulation 7

Tools: Expense of tool/ license 4

Tools: Expense of computing power 4

Other: Other 2

Other: Ethical concerns 1

Pain points observed in LMICs (n=29) 

Tools: Expense of tool/ license 12

Capabilities: Availability of suitable staff   11

Capabilities: Lack of understanding of AI 11

Data: Availability of suf�cient / high quality data 10

Tools: Expense of computing power 9

Tools: Availability of appropriate high-quality tool 8

Data: Expense of data 7

Capabilities: Expense of recruiting suitable staff 5

Tools: Lack of trust in AI tools 2

Data: Lack of data policy/regulation 2

Other: Regulatory or compliance challenges 0

Other: Ethical concerns 0

Other: Other 0

Common barriers Cost related barriers 

infectious disease or natural product identification. 
Open-source tools for both these areas exist, albeit 
at different levels of maturity [45], [46]. Commercial 
tools also exist, however, the high costs of licensing 

these tools often present a major barrier. This was 
substantiated from our survey analysis, where over 
40% of LMIC survey respondents cited cost of tools 
as their main barrier to adoption (see figure 16).



iii.  Lack of access to relevant tools

Finally, our analysis shows that challenges in 
accessing tools can also hinder adoption. 

To date, much of AI in drug discovery has been 
driven by the private sector, with investors and 
pharmaceutical companies funding ‘AI-first’ 
biotechs who apply AI most extensively. As a result, 
most cutting-edge AI algorithms, tools and 
databases are patented or otherwise protected, and 
sometimes unavailable to a broad community of 
drug discovery researchers. 

In our survey and interviews, some experts 
expressed a concern that extensive patenting and IP 
protections could lead to “intellectual property lock 

Much of what works and goes on in 
pharmaceutical companies is behind walls. 
Knowledge, data, and tools are locked up.

Senior Vice President, ‘AI-first’ biotech

up” of the AI drug discovery space. This is being 
compounded by changes in the business models of 
many ‘AI-first’ biotechs, away from software or 
fee-for-service model towards proprietary pipeline 
development (See figure 17). This shift in turn 
heightens the need to patent or otherwise protect 
intellectual property, and disincentivises provision 
and support for widely used external software 
solutions.

As with other barriers, “IP lock up” disproportionately 
affects research academia and LMICs who often 
struggle to pay licensing or access fees for proprietary 
tools (as mentioned above) or have the capability 
networks to deploy/develop open-source tools.

Figure 17 – Spectrum of business models observed in ‘AI-first’ biotech companies

Providing AI platform 
solutions as 

fee-for-service 

Whilst some software players intend to play 
only in this space, some 'AI-first' biotech 
companies begin as fee-for-service to 
allow validation of models and begin 

proprietary data generation 

Employing a mixed 
fee-for-service plus 

pipeline model 

Once models are validated,  
'AI-�rst' biotechs employ a mixed 

model where they in-licence 
assets, to begin significant 

revenue generation 

Using AI solutions 
to create

own pipeline 

As capabilities and models improve,  
'AI-�rst' biotechs mature to create their 
own pipeline, which is further driven by 
investors valuing pipeline assets over 

proprietary tech platforms 
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In section 7 of this report, we discuss how cross-
industry initiatives could help address this challenge.
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Building infrastructure for AI in drug 
discovery is more than just providing 
computers – in some of these places even 
accessing reagents is a struggle.

Senior Program Officer, Global Health 
Non-profit Organisation

Barriers relating to capabilities 
Capability-specific barriers are mostly related to the 
(i) lack of expertise needed to develop and deploy AI 
tools (ii) lack of required training to use existing tools 
and (iii) lack of infrastructure necessary to support AI 
in drug discovery efforts. The severity of these 
barriers varies by geographies and sectors, with the 
last two most applicable to LMIC settings.

i.  Lack of required expertise to develop and 
deploy AI tools 

Both the development and deployment of AI tools in 
drug discovery requires a combination of technical 
drug discovery experience (e.g., structural biology, 
medicinal chemistry etc.), and data science/ data 
engineering expertise. Experts repeatedly 
highlighted the need to establish these multi-
disciplinary teams internally or through 
collaborations to truly embed AI techniques into 
drug discovery workflows.

Both academics and industry leaders reported a 
lack of relevant subject matter expertise. They also 
highlighted significant challenges in the formation of 
multidisciplinary teams, such as experts being 
unable to “speak the same language”, and 
difficulties working across organisational siloes to 
foster collaboration between teams. Furthermore, 
they noted that as large organisations adjust 
processes and workflows to embed AI, these 
challenges will likely be exacerbated. Thus, 
increased training and skill building will be required 
across both AI and drug discovery experts, not only 
to support the capability gap today but also to 
support interdisciplinary teaming in the future [47].

ii.  Lack of required training to use existing tools

At present, drug discovery and computational 
science research within some LMICs is not yet fully 
established. As a result, it is often challenging to find 
talent with relevant experience [48], [49], [50]. 
Furthermore, in our interviews, many researchers in 
LMICs highlighted the lack of structured trainings on 
the use of AI tools, and the lack of formal university 
training programs on AI fundamentals, let alone on 
its application to drug discovery [51], which further 
hinders the adoption of AI in LMICs

iii.  Lack of required infrastructure required to 
support AI in drug discovery efforts

In addition to a strong talent pool, computational 
infrastructure and experimental set-ups are also 
required to support models and validate outputs 
from AI. Within LMICs, this infrastructure is often 
missing, ranging from basic technology 
infrastructure, such as lack of stable cloud access 
and compute power to build and run models 
smoothly, to more drug discovery specific 
capabilities such as the lack of supporting wet lab 
capabilities to test model hypotheses.

Hiring talent at the intersection of biology and 
AI is very challenging. There is a chronic 
shortage of people with the right skillsets for 
using AI in drug discovery. And we struggle 
to keep those with the right skillset – we are 
competing not only with biotechs but also the 
likes of Google. We can’t compete with better 
paid industries.

Head of Drug and Vaccine Discovery, Academia

There’s a lack of communication and 
understanding between biologists and 
computer scientists – people think in silos.

Organic Chemistry Professor, LMIC

Pharmaceutical companies and ‘AI-first’ 
biotechs will use the skillsets they have at their 
disposal to accelerate, but LMICs still have a 
long way to go to catch up.

Head of Drug Discovery, Non-profit Organisation 

Conclusion: barriers limiting 
adoption of AI in drug discovery
Overall, AI in drug discovery has seen uneven rates 
of progress across use cases, therapeutic areas, 
and settings often driven by a patchwork of 
available data, tools, and capabilities. Significant 
opportunities remain to support the development 
and adoption of AI technologies to discover new 
medicines, particularly for under-served diseases. 
The next section explores some of the emerging 
solutions across the use cases in focus.
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7. Potential 
solutions to 
drive adoption



Figure 18 – Potential initiatives for addressing barriers limiting the adoption of AI in drug discovery

Non-exhaustive

Build trust and increase understanding

Catalogue successes and 
failures of derived assets to 

build objective value proofs

Demonstrate performance 
and breadth of AI-tools in 
the �eld of drug discovery

Transparently communicate 
the limitations of tools that are 

newly developed or available

Promote responsible use 
of AI in drug discovery

AI Enablers

Data

Tools

Capabilities

Increase Maturity

Enrich depth and breath of existing data sets 
(e.g., expand quantity, add metadata)

Generate new data sources to �ll high priority 
gaps (e.g., for disease understanding)

Develop new tools (e.g., generative design) 
to address frontier problems via industry 
competitions, novel incentive structures etc. 

Improve tool quality and applicability for existing 
tools across the drug discovery ecosystem

Build local research capacity and infrastructure, 
i.e. labs, materials and computing resources

Foster expertise development, knowledge 
sharing and talent retention

Expand Access

Broaden innovative data access models for 
private data including federated models, public 
access initiatives

Generate public open-source alternatives to 
proprietary data, e.g., libraries, repertoires

Propagate and maintain open-source 
platforms that are user-friendly and low-code 

Support innovative access and licensing 
models for proprietary tools and platforms

Encourage collaboration models for sharing 
capabilities across regions 

Create peer-to-peer networks of researchers 
across global community

Drive Standardisation

Expand use of existing data standards and 
protocols for AI data quality and interoperability 
(e.g., FAIR)

Encourage development of advanced data 
standards for speci�c use-cases or modalities

Establish best practices for benchmark model 
validation and quality assurance of tools

Align on interoperability standards for tools

Develop and implement standard drug discovery 
training curriculum 

Expand standardised knowledge-sharing forums 
for wider community exchange
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Given the exciting potential of AI in drug discovery, but also the barriers and 
challenges outlined above, we see a need for broad initiatives to drive adoption of 
AI in drug discovery across sectors, geographies and therapeutic areas. 

These initiatives could help to build trust, enrich datasets, and foster the 
development of new tools and capabilities. Figure 18 gives an overview of these 
potential initiatives.



Figure 19 – Examples of solutions already underway today to address barriers to adopting AI in drug discovery

Generate new data sources, e.g., 
• African Genome Variation Project: aims to genotype 2.5M 

genetic variants in 100 individuals across 10 ethnic groups

Connect disparate data, e.g., 
•  Open Targets: generates and uses genomics data through  

public-private partnership (partners incl. Sano�, Sanger)

Innovative data access models, e.g.,  
•   CDD Vault: hosts Public Access Data relevant to drug 

discovery from leading research groups around the world 

Expand use of existing data standards, e.g., 
•  FAIR: enables scalability and broader applicability of 

data though standards and protocols

Public open-source alternatives, e.g.,  
•   Calibr ReFRAME: comprehensive source library of ~12000 

molecules to facilitate drug re-purposing1

Industry competitions to develop new tools, e.g., 
•  CASP: establishes state of the art protein structure 

prediction tools (AlphaFold) through a community-wide 
competition

Novel incentives to develop new tools, e.g., 
•  AION Labs: supports multi-disciplinary development 

of solutions in partnership with leading pharma 
companies through unique venture creation process  

Build local infrastructure and expertise, e.g., 
•  H3D: establishes cross-functional group to enable local 

drug discovery focused on infectious diseases through 
building of capabilities and expertise

Drug Discovery training curriculum development, e.g., 
•  University of Dundee: develops and offers drug 

discovery training courses, focused on supporting LMIC 
infectious diseases research

Cross-sector expertise development, e.g., 
•  Collaborations Pharmaceuticals: works with academics across the globe focussing on drug discovery for multiple rare and 

neglected infectious diseases

Innovative access and licensing models, e.g., 
•  DNDi-Benevolent AI: identi�es targets and compounds 

to be repurposed for Dengue through collaboration

•  Atomnet: provides access to proprietary small molecule 
virtual screening tools given to AIMS award scientists

Benchmark model validation, e.g., 
•  MOSES: provides set of metrics to evaluate the 

quality and diversity of generated structures

Increase Maturity Expand Access Drive Standardisation

Non-exhaustive

Build trust and increase understanding

Promote responsible use of AI e.g.,  
•  FHI AI Governance Research Group: advises decision-makers based on research conducted on AI governance 

•  WEF – The AI Governance Journey: highlights best practices in AI governance 

AI Enablers

Data

Tools

Capabilities

Open-source platforms, e.g., 
•   OpenFold: develops open-source and free AI-based 

protein modelling tools that can predict molecular 
structures with atomic accuracy
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1. Library created by combining three databases (Clarivate Integrity, GVK Excelra GoStar, and Citeline Pharmaprojects)
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BOX 3: Examples of existing initiatives
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Several initiatives to address these barriers are already underway, such as those 
creating novel training data or tools, expanding application of existing technology 
to under-served diseases or building capabilities in LMIC settings (see Figure 19). 

However there remains an opportunity to scale or broaden initiatives across all 
disease areas.

Human Immunome Project
A global non-pro�t aiming to create the �rst AI 
model of the human immune system to enable 
faster, cheaper, and more effective development 
of vaccines and treatments

Description
The consortium brings together leaders 
across industry, academia, governments 
and non-profits to compile the biggest 
dataset of biomedicine at a population 
scale, and fund, develop and advance key 
scientific goals. Collaborators include GSK, 
Moderna, Illumina, National Institutes of 
Health and Harvard School of Public Health.

A set of key initiatives and partnerships have 
been established to focus on those most at
risk of disease, and the hardest to protect
– such as the elderly, those most susceptible
to antimicrobial resistance, and those
living in developing countries – as well as
setting themselves up to tackle pandemic
preparedness in the future.

Open Molecular Software 
Foundation
A non-pro�t organisation focused on 
building open source software and 
communities for molecular sciences. 

Description

Develop cutting-edge open-source AI-based 
protein modelling tools that can predict 
molecular structures with atomic accuracy.

Software released under permissive 
license enables both academic and industry 
researchers globally to use, validate, and 
improve the tools.

Complete training, inference stack and 
training datasets are also shared under the
permissive license.

Additionally, they develop packages that 
maintain and increase interoperability of 
existing free energy method tools.

Critical Assessment of 
Computational Hit-finding 
Experiments (CACHE) 
A series of competitions targeted towards 
computational chemists and scientists from the 
drug discovery �eld aiming to de�ne the cutting 
edge of molecular design of small molecule 
therapeutics, similar to the Critical Assessment of 
protein Structure Prediction (CASP) competition

Description
Sponsored competitions that focus on 
specific protein targets of biological or 
pharmaceutical relevance e.g., predicting 
hits for a speci�c domain within a Parkinson’s 
disease target molecule, or identifying ligands 
targeting components of SARS-CoV2.

Participants use computational algorithms 
to predict hits; algorithms are then tested 
experimentally by CACHE, and all data and 
chemical structure information are released 
publicly.

CACHE allows for comparison of tools, and 
creation of additional data.

Source: Website [21], [27], [52]
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To truly unlock the potential of AI in drug discovery, 
our analysis identified a number of opportunities 
across the areas, as described in Figure 18.

Whilst in most cases, solutions will differ by use 
case, there is also an overarching need to build 
broader trust in AI, and the value it could deliver to 
the drug discovery field. 

There are many paths by which this can be attained, 
with transparency being fundamental to help cut 
through the hype in the field today. Initiatives could 
include cataloguing the successes and failures of 
AI-derived assets, demonstrating tool performance 
and breadth (the CASP and CACHE competitions are 
already doing this), and transparently communicating 
the limitations of tools that are newly developed or 
available [27], [53]. Examples of the latter can be seen 
in OpenAI’s publication of the outcomes of red-team 
testing of GPT-4, or AlphaFold’s publication of a 
per-residue confidence score in its protein structure 
predictions [54], [55].

There is not going to be a silver bullet to build 
trust; a myriad of approaches will be needed

Professor of Bioinformatics, Academia

Serious uptake requires fully transparent real-
world examples where AI has successfully 
delivered. For AI efforts on fundamental aspects 
of R&D, quality has to be 100% unquestionable 
(e.g., no one running a R&D project is going to 
take toxicity guidance from AI unless AI can 
provide hundreds of examples of being right  
and zero examples of being wrong)

Director, Life Science Venture Capital

The value AI will bring in understanding disease 
is in the linking of datasets to build hypotheses 
based on far more data than any human could 
even fathom synthesising

COO, ‘AI-first’ biotech 

Together, initiatives such as these helps clarify the 
potential value at stake, as well as help users better 
understand the relative strengths of tools, and how 
to best deploy them.

Understanding Disease: Solutions to 
drive adoption of AI
Whilst understanding disease use cases have seen 
considerable research efforts to date (as described in 
section 5.1), furthering our understanding requires the 
availability of large, interoperable datasets from which AI 
techniques can triangulate datapoints to identify and 
validate molecular drivers of disease.

Thus, to advance the field and broaden the applicability 
of AI solutions to underserved diseases, there are two key 
opportunities to improve data access and integration:

i. Enriching or combining 
datasets to better 
understand molecular 
drivers of disease

ii. Enabling data  
standardisation and facilitating sharing 

i. Enriching or combining datasets to better 
understand molecular drivers of disease 

AI algorithms used for understanding disease 
typically look for connections between clinical data, 
molecular mechanisms and biological pathways, 
either for repurposing efforts or for finding new 
targets. This usually involves combining different 
types of disease specific data (multi-omics data, 
patient data, treatment history etc). Examples 
include precision medicine approaches for oncology 
and immunology across both academia and the 
private sector (e.g. Tempus, Immunai, OWKIN, 
TCGA) [56]–[59]. The main challenges in building 
these data sets are fragmentation of datasets, 
especially real-world data, and inconsistent data 
availability, especially diagnostic data.

An example of where data presents a critical 
challenge today is Mental Health. Inconsistent 
coding of mental health diagnoses, and a lack of 
rich molecular diagnostic data hinders the 
application of AI in drug discovery efforts.

To address these challenges, targeted efforts are 
required to improve data maturity through the 
generation of new datasets, or via enrichment of 
datasets that might already exist. For example, 
longitudinal population study data can be enriched 
with Mental Health-specific data, such as diagnoses 
and symptomatology, to help identify patient 
phenotypes. For some diseases, these efforts have 
already begun to draw a closer link to molecular 
drivers for disease precision medicine. For example, 
real-world-data players such as Tempus are 
expanding to pharmacogenetic testing of neurology 
and mental health patients, and models such as 
DRIAD are aiming to quantify the association 
between early stage Alzheimer’s and biological 
processes that can be defined by a set of genes 
[60], [61].

Companies need to be transparent about what 
they actually can do, only then we can see the 
value; but for now, we can’t be believers

Chief Executive, Data Consortium
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Small Molecules: Solutions to drive 
adoption of AI
For small molecule discovery, the use of AI is more 
mature, with relatively accessible data, and open 
source and proprietary tools available.

Our expert interviews and survey have identified two 
opportunities:

i. Improving access of established 
tools and platforms to 
underserved diseases

ii. Supporting the  
deployment of existing  
open-source tools across  
the ecosystem, particularly  
in LMICs 

i. Improving access to established AI tools and 
platforms, for small molecule discovery in 
currently underserved diseases

Expanding access to open-source and proprietary tools 
(i.e., through licensing and partnership) could change 

ii.   Enabling data standardisation and  
facilitating sharing 

The ability to share data is critical for understanding 
diseases with AI, including in vitro assay data (e.g., 
experimental conditions, cell lines), clinical trial data, 
and real-world evidence. To achieve this, many 
experts we interviewed and surveyed have 
highlighted the need for greater data 
standardisation.  

For some diseases, this is already beginning to 
happen. For example, in infectious diseases, the 
Poolbeg-CytoReason partnership standardises and 
analyses clinical data from their influenza and RSV 
challenge trials to identify drug targets for the 
treatment of these diseases [62]. Examples such as 
this highlight the potential for AI applications in the 
infectious disease space should greater data sharing 
become possible within clinical settings.

Whilst approaches such as FAIR data (as mentioned 
above) can lay out the principles for data sharing 
and interoperability, driving adoption of concrete 

In Mental Health, there is a lot that needs to 
happen first at the disease understanding level 
outside of AI. For example, translatable models, 
better defined clinical end points and better 
molecular diagnostics

Animal models for mental health are terrible; 
cellular models are limited. The omnigenic 
nature and confounders of mental health make 
it very difficult to have model systems

Vice President, ‘AI-first’ biotech

CEO, ‘AI-first’ biotech

To tackle the problems we are facing as a field 
today, we need to first sort the deeply 
unfashionable areas such as data structure 
and standardisation – we need to walk before 
we can run

Senior Vice President, ‘AI-first’ biotech

and specific data standards is likely to require 
considerably more effort – namely, buy-in from 
leading databanks, as well as mandates from 
academic institutions, publishers and funders to 
encourage broad adoption of data standards.

the economics of drug discovery, as described in 
Section 5.3 Box 1. 

Regarding licensing, many companies are already 
offering their platforms in a fee-for-service model. To 
expand access, some companies have started 
providing licenses to their platforms for free – most often 
to academic groups looking for solutions for an 
unaddressed health need, or to those operating in 
underserved disease areas. Atomwise, for example, 
have opened their virtual screening platform to scientists 
involved in their AIMS award programme [63]. 

We wouldn’t ordinarily be looking at diseases 
such as Malaria (due to commercial viability 
for an early-stage start-up), but under the 
umbrella of a targeted grant, we are of course 
more than happy to use our platform for these 
types of diseases

Vice President ‘AI-first’ biotech 

In addition, there are several major partnerships 
between pharmaceutical companies, Global Health 
and academic centres. In these partnerships, access 
to proprietary AI platforms is granted in a more 
targeted manner. Within Global Health particularly, 
this often takes the form of funders providing 
specific investment to enable the deployment of a 
proprietary tool within a disease area of interest to 
them, such as the Gates-Exscientia collaboration in 
Malaria and anti-viral discovery efforts [64], [65].

However, our expert interviews highlighted that 
opening access to AI tools in itself is often not 
sufficient. To truly drive adoption, developers of 
open-source tools should focus on tool usability via 
simple user interfaces and easy maintenance, 
especially for use in settings where technical skills 
are less readily available. 

i

ii
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i.  Supporting data collection and sharing for AI 
in vaccine discovery 

As discussed above, one of the great challenges of 
vaccine discovery today is the often limited 
understanding of how pathogens interact with the 
human immune system. AI is well-placed to help 
address these challenges but requires large datasets 
to train algorithms e.g., data on pathogen structures 
or the impact of post-translational modifications on 
immune response. Our expert interviews suggest 
that systematic data collection and data sharing 
could boost the use of AI in vaccines discovery.

 ii.  Supporting the deployment of open-source tools 
across the ecosystem, particularly in LMICs

Many experts we interviewed mentioned that open 
source tools theoretically could be deployed in LMIC 
settings. However, this often requires substantial 
education, training and experience-sharing across 
centres of excellence [66]. 

Regarding training and education, we see a global 
need for improved education on the AI tools available 
today. Some of this is already happening e.g., 
webinars on the REINVENT platform open sourced by 
AstraZeneca. Further efforts are likely required, with 
Global Health funders, industry players, and local 
trailblazing institutions driving maximum impact here.

Regarding experience-sharing and networking, we 
see opportunities to foster more partnerships across 
LMICs – to train and upskill researchers, share 
capabilities and infrastructure (including cloud 
access, computing infrastructure) or collaborate in 
multi-disciplinary teams [67]. 

Currently you need a certain level of 
expertise to use open-source tools because 
a lot of the tools out there are not user 
friendly – there is no incentive to maintain 
user friendly platforms

CEO, AI Software Non-profit Organisation

We have established collaboration to 
implement fully functional AI tools in our 
institution. We anticipate that extensive 
future use will lead to success stories to tell 
and share with other groups in Africa

Natural Products Professor, LMIC

We must increase hands-on training 
workshops in LMIC on the use of AI tools, 
especially for underexplored research areas 
such as natural products

Infectious Diseases PhD student, LMIC 

Notable examples include the H3D-Ersilia 
collaboration, which provided a fully sponsored 
four-day training in AI drug discovery to African-based 
researchers working in infectious disease; and Zindi, 
an online platform and community of data scientists 
which provides online training in AI, runs competitions 
to develop and validate models, and encourages users 
to connect to openly discuss models, share feedback 
and ask questions [68]–[70]. 

Vaccines: Solutions to drive 
adoption of AI
As discussed above, the use of AI in vaccines 
discovery is more nascent than in other areas, and 
the AI technology (e.g., for mRNA vaccines) typically 
exists in small number of industrial companies.

We therefore see two main solutions that could drive 
greater adoption of AI in vaccines. 

i. Supporting data collection and 
sharing for AI in vaccine 
discovery 

ii. Fostering improved 
access and deployment 
of AI technologies to 
underserved diseases

Neglected disease is always behind other 
therapeutic areas for data availability and, in 
turn, we also have far fewer AI tools available 
at our disposal

Organic Chemistry Professor, LMIC

i

ii

Whilst a number of examples of AI-based open-
source immunogenicity prediction models do exist 
(e.g., TRAP, a deep learning platform that predicts 
CD8+ T-cell recognition of MHC-I presented 
pathogenic peptides), the use of these models is not 
yet fully established [71]. Our interviews highlighted 
the importance of building relevant datasets to 
support model training through data sharing and 
other global initiatives to improve our current 
understanding of immunogenicity. For molecular 
data, generation will likely need to be driven by 
researchers in the field (e.g., bacterial protein 
characterisation); whilst for patient data, a combined 
effort between academia and industry may be most 
effective [72]. 
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Private endeavours aimed at building internal data 
sets and developing novel AI approaches are also 
underway (e.g. Evaxion’s PIONEER and RAVEN 
models based on patient genomics data from 
samples of healthy and tumour tissues) [73]. In 
addition, there are public-private partnerships to 
bring different stakeholders together to address 
these challenges (e.g., Human Immunome Project, 
Box 3). 

For mRNA vaccines specifically, more data is 
required to improve the tools for designing mRNA 
constructs and optimising delivery. As discussed 
above, mRNA research has so far been driven by 
the private sector through COVID-19. For greater 
applications in academia, access to some of these 
data and tools would be helpful in further 
accelerating the field. 

ii.  Fostering improved access and deployment of 
AI technologies to underserved diseases

Given that most of the AI-based tools for vaccine 
discovery reside in industrial companies, 
collaboration to ensure broader access is critical. 

Some vaccine companies with established platforms 
are already developing extensive pipelines against 
global health diseases (E.g. Moderna have two 
assets in the clinic for Zika and Nipah [74]). Efforts 
are already underway to improve access to these 
platforms for neglected diseases. 

To date, the most notable of these is the Moderna 
Access program which allows partners to rapidly 
test parallel antigen design for priority pathogens in 
preclinical testing [75]. Other industry players and 
funders alike could take this as inspiration when 
considering how they could look to support drug 
discovery for further underserved disease areas.

Traditional drug discovery processes, 
particularly with antibodies, don’t gather data in 
a way that is useful for AI, so datasets have to 
be built from scratch.

C-Suite, ‘AI-first’ biotech

Antibodies: Solutions to drive 
adoption of AI
Antibody AI discovery efforts are increasingly gaining 
traction in industry and through public-private 
solutions. Whilst there are more and more AI-derived 
antibodies, our analysis suggests opportunities to 
improve the maturity of tools (especially open-source 
solutions) today and increase the breadth of 
applications beyond oncology and COVID-19. 

Key opportunities include:

i. Improving data access to 
support new AI tools for 
antibody discovery 

ii. Improving usability, 
validation, and 
deployment of existing AI 
tools for antibody 
discovery 

iii. Broadening applicability of AI tools,  
particularly for infectious diseases

i.  Improving data access to support tool 
development

Antibody discovery efforts have historically been 
driven by ‘AI-first’ biotech and pharmaceutical 
companies, with much of the relevant data e.g., 
sequence-to-structure or sequence-to-property 
relationships not widely accessible. This is 
particularly true for tools that support de novo 
antibody design or multi-property prediction and 
optimisation (e.g., across solubility, aggregation, 
immunogenicity etc.) although some point examples 
of open-source tools do exist, such as Rosetta [76].

Public efforts have started to catalogue relevant 
data, resulting in tools that support humanisation 
prediction (e.g., BioPhi) and structure prediction 
(e.g., ABlooper) for example. However, greater 

ii.  Improving usability, validation, and deployment 
of existing AI tools for antibody discovery 

Open-source AI tools do exist today, most notably in 
antibody structure prediction (e.g., ABlooper, IGfold) 
or binding use cases (e.g., Alphafold Multimer) [77], 
[79], [80].

However, in our interviews many practitioners 
highlighted that these tools can be slow (>20 
minutes to run) which limits their application in early 
discovery campaign, where large libraries of 
sequences typically need to be analysed. Thus, 
initiatives such as those to improve running times of 
tools, employ non-code user interfaces, and reduce 
required compute power to deploy the tool could be 
helpful to increase adoption. For example, the Baker 
Lab at the Institute for Protein Design aims to predict 
protein–protein docking and design new protein 
structures through their Rosetta@Home initiative 
which allows volunteers to donate CPU capacity by 
running the software on their computers [81]. 

Additionally, as with small molecules, better external 
comparison and validation of open-source tools 
would help users identify optimal tools to use.

i

ii iii

coordination between different organisations could 
be beneficial particularly where internal data alone 
could be limiting (e.g. developability parameters) 
[77], [78]. 
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i. Sharing proprietary preclinical and clinical 
datasets to better understand and model 
safety signals 

In our interviews, experts highlighted the challenges 
of predicting safety and toxicity based on 
experimental data with insufficient supporting 
clinical validation. Combining different data sources 
and collaborating is therefore critical.

A number of organisations are already trying to 
address these challenges. One such example is 
OMEC.AI, founded by AION labs as a result of a 
challenge set to identify an AI-based system to 
predict safety risks. This collaborative project aims 
to amalgamate historical pre-clinical data on a drug 
of interest and deliver potential safety liabilities that 
may have been initially overlooked [84].
For diseases where existing data can be challenging 
to standardise and access, our analysis indicates 
that greater data sharing would be beneficial. 

For example, networks such as Datacelerate are 
providing a platform on which partner companies 
can upload and merge deidentified research and 
development data types, including preclinical 
toxicology [85]. This network currently has 4,500 
collaborating experts across 20 member companies 
and presents an interesting model for data sharing 
that could provide the bedrock for advances in this 
field. Going forward, these efforts could include data 
sets for a broad range of disease areas, particularly 
neglected diseases.

ii.   Experimenting with innovative preclinical 
approaches (experimental and AI-derived) 

The regulatory framework for preclinical testing is 
evolving, with recent changes such as the FDA 
Modernisation Act 2.0 encouraging a shift away 
from animal models and towards in silico and novel 
experimental predictive models [16]. 

As a result, we see increasing interest from different 
organisations to explore novel mechanisms of 
predicting safety and toxicity, moving away from in 
vivo models to novel experimental methods (e.g., 
single-cell experiments, organoids etc) or in silico 
predictive models (e.g., quantitative systems 
pharmcology, QSP). Over time, this is likely to increase 
adoption of AI in the safety and toxicity space.

iii.  Broadening applicability of AI tools, 
particularly for infectious diseases

So far, the most advanced examples of using AI in 
antibody discovery come from industry, especially 
‘AI first’ biotech companies. To increase adoption, 
we see the opportunity for greater public-private 
partnerships in AI-antibody discovery to apply this 
technology more broadly to underserved diseases.

One such example is Abcellera’s partnerships with 
the Bill & Melinda Gates Foundation in 2017 and 
2019, which supported the discovery of antibodies 
for diagnostic testing in Mycobacterium tuberculosis 
infection, and more recently supported researchers 
in HIV, malaria, and TB [82], [83]. 

Safety and Toxicity: Solutions to drive 
adoption of AI
While Safety and Toxicity continues to be a key area 
of opportunity for AI, academic and private efforts to 
develop algorithms and tools have been limited to 
date.

Our analysis suggested two solutions which could 
unlock progress within this field:

i. Sharing proprietary 
preclinical and clinical 
datasets to better 
understand and model 
safety signals 

ii. Experimenting with 
innovative preclinical 
approaches (experimental 
and AI-derived) 

AI in predictive toxicology may work well in 
the development sphere, but international 
regulations (e.g., WHO and ICH) will still 
require appropriate in vivo modelling. Cell-
based toxicity may be an accepted alternative 
in some cases. AI may provide a rationale for 
the selection of species or what to look for, 
but at this time, there would be insufficient 
regulatory acceptance of safety and/or toxicity 
based solely on AI prediction

Scientist, Global Health Non-profit

i

ii

Conclusion: Driving adoption of AI in 
drug discovery
AI in drug discovery is at an exciting inflection point. 
Not only is there a huge amount of dynamism across 
solutions – with initiatives already spanning data 
generation, tool optimisation, pan-industry, and 
pan-geography collaborations – but there are also a 
range of further tangible opportunities for funders and 
key players within the broader drug discovery 
ecosystem to make a marked impact on a host of 
human health challenges. 
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8. Call to 
Action for 
Funders
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The findings of this report suggest that all funders of 
health research – from basic science to translation and 
product development – stand to benefit from unlocking 
the potential of AI in drug discovery. Some research 
funders, especially those focused on product 
development, may see immediate and clear links to 
their strategy. Other funders, especially those more 
upstream in basic science are likely to increasingly see 
AI as a key tool in the pathway to impact from the 
research they fund. Funders collectively will have 
enormous influence in how this field develops over the 
coming years, and if funder efforts help overcome 
access restrictions, how and when AI delivers on the 
potential outlined in this report.

Our analysis suggests six key actions for funders to 
take now. 

1. Find value from AI today 
Based on the landscaping described in this report, 
drug discovery efforts focused on small molecule 
discovery and optimisation could immediately 
benefit from applying AI to accelerate current efforts 
and programmes. This could be through deployment 
of open-source tools, such as those for virtual 
screening or de novo drug design (e.g., VirtualFlow, 
REINVENT 2.0), or through seeking partnerships 
with ‘AI-first’ biotechs with well-known small 
molecule platforms such as Benevolent AI, 
Exscientia, or Recursion. Funders supporting efforts 
focused on antibody and vaccine discovery may be 
able to find value from AI use cases today, but these 
are more likely to require public-private partnerships 
given the paucity of open-source tools for these 
modalities. 

Funders may also find value today from applying AI 
to target identification in data-rich therapeutic areas 
such as oncology and immunology.

Funders can review their current portfolio and 
latest funding calls to identify efforts that could 
find value from AI today and engage pro-actively 
with investigators to review and re-tool discovery 
efforts as appropriate. 

2. Take no-regret moves to maximise 
future value

Almost all research efforts will generate data that can 
have future value in training AI models to support drug 
discovery. Interviews and survey responses in this 
landscaping have highlighted how factors such as 
variable access to research data, data quality, structure 
and presence of metadata can have an enormous 
impact on how valuable a research effort is to training AI 
models. Trends described in this report suggest that 
ability to incorporate research data into AI models will 
be an increasingly important part of how that research 
can deliver impact in future drug discovery efforts.

Funders can help future-proof investments by specifying 
requirements in grants for the need to (i) publish data in 
open-access repositories that support APIs for future 
linkage to AI tools (ii) optimise machine-readability of 
published data (iii) publish relevant metadata to support 
interpretation. These actions will have the most impact 
when taken in concert with other funders (see below)

Funders can take stocks of their current data 
access and publication policies and make updates 
to ensure research data is maximally useful for 
emerging AI applications.

3. Build coalitions to shape the ‘rules 
of the road’ 

Scale is critical for delivering value from AI – funders 
acting in concert will be critical to realise the potential 
described in this report, especially in less data-rich 
therapeutic areas and less mature use cases. Where 
standards exist and are well adopted e.g., in areas 
such as protein structures, genomics and medicinal 

chemistry, AI has been able to rapidly deliver value. 
Beyond these areas, landscaping has identified lack of 
standardisation as a critical barrier to scale and 
impact. 

Funders have a critical role in building the ‘rules of the 
road’ in data, tools and capabilities described in this 
report. An initial set of actions could include (i) agreeing 
a common minimum standard for publishing research 
data to support future AI applications (as above), similar 
to IDDO’s creation of a data platform for collation and 
standardisation of individual patient data from clinical 
studies in Chagas disease [86] (ii) requiring and 
supporting grantees to ensure ongoing maintenance of 
any open-source AI tools (iii) expanding access to 
existing training and development programmes to data 
scientists and related AI disciplines. 

New measures to assess and compare the quality of 
new AI tools will be critical for funders to navigate this 
space. Funders can look to support efforts to 
transparently benchmark AI tools within specific use 
cases to build greater understanding of their capabilities 
and limitations and also measure the impact of their 
funding. This type of benchmarking could be achieved 
through competitions akin to CASP and CACHE.

Funders can identify and convene potential partners 
across the public, private and philanthropic space to 
build coalitions to support a common goal of 
maximising the value of AI in drug discovery.

4. Invest where AI intersects with 
drug discovery goals

Funders focused on drug discovery may see value from 
AI today (as above) and material investments in AI 
approaches could be appropriate immediately to 
support their drug discovery goals. Funders less 
focused on drug discovery, or in therapeutic areas and 
modalities where AI is less mature, will need to critically 
assess where AI most closely intersects with their 
goals and what their role should be to develop data 
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and use cases to the point of being able to deliver 
value from AI.

For example, funders in data-poor therapeutic areas, 
such as infectious diseases and mental health, may 
see value in supporting the foundational datasets that 
are essential for training AI models. These foundational 
efforts may typically suit large-scale funders able to 
make multi-year investments and comfortable with a 
time horizon of 5-10+ years to impact. An example of 
this type of foundational data set build is efforts to 
digitally map the entire Drosophila brain ‘the fly 
connectome’- funded by Howard Hughes Medical 
Institute, Wellcome and the UK Medical Research 
Council amongst others.

Funders focused on topics where large-scale data 
generation isn’t feasible for financial, practical, or 
ethical reasons may see value in targeted investments 
to improve the AI-readiness of historical research data. 
This could apply to research into neglected tropical 
diseases, rare diseases or pathogens with high 
pandemic potential. An example of funder support for 
this type of activity is the US National Institute of 
Health where grant recipients can apply for additional 
funding to support a variety of activities such as, but 
not limited to; cleaning and filtering data, preparing 
data for multi-modal multi-scale AI applications, 
developing, and sharing documentation to highlight 
recommended uses for the data [25]. Funders should 
also be aware that the boundaries of feasibility are 
changing rapidly with new AI tools being developed to 
work with sparse or lower quality data.

Funders supporting drug discovery efforts in LMICs 
may see value from building the local capabilities 
needed to deploy AI techniques which may be under-
developed currently. These include computational 
chemistry, bioinformatics and access to computing 
power and re-agents for confirmatory testing. 

Identifying the most appropriate and impactful 
investments will also require funders to maintain strong 

awareness of where the private sector and academia is 
likely to make progress, and also areas where progress 
is slower than ideal. This report highlights the rapid 
pace but also the heterogeneity of progress - requiring 
funders to maintain close links across the ecosystem 
and to tailor their approach over time.

Funders can start identifying where AI can help 
them deliver their drug discovery goals and 
consider targeted investments where they see a 
pathway to impact

5. Contribute to the public debate 
AI has rapidly emerged as an ‘all-of-society’ topic with 
national and international bodies responding with 
regulatory and legal instruments as they grapple with 
the potential implications. An example of this is the 
EU’s Regulatory Framework and Coordinated Plan on 
AI that could enter force later in 2023. 

Interviews and surveys as part of this landscaping 
suggest that funders looking to harness the potential 
of AI in drug discovery are likely to rapidly feel the 
implications of these debates in diverse areas, such 
as, perceptions of their governing bodies and peer 
reviewers to AI investments, and ability to move or 
access research data across borders.

Contributing to, and helping shape, the public debate 
on AI will be critical for funders and may include (i) 
transparency on AI-related activities and their 
outcomes (positive and negative) akin to the Royal 
Society conference on AI in drug discovery (ii) 
advocating for the use of AI and enablers to AI (such 
as equitable data sharing) where clear value proof 
exists.

Like all AI models, those in drug discovery are likely to 
contain biases based on the makeup of training data 
and how this is, or isn’t, representative of the wider 
population. Funders will play a key role to build trust in 
the field, through better understanding and tackling of 
these biases.

Funders can be a key voice to make the case for 
AI as part of the wider public debate and can 
make positive contributions to public 
understanding and trust 

6. Build the organisational 
capabilities to deliver

Many funders may currently lack the capabilities to 
understand the AI space, critically identify 
opportunities, advise current grantees on 
opportunities, and appraise future grant applications. 
The breadth of the field, limited talent pools and 
competition from tech, ‘AI-first’ biotech and 
pharmaceutical companies are likely to make it 
challenging for most funders to build deep internal 
expertise on these topics. 

Funders may also face choices about how to best 
incorporate AI as part of their activities. For example, 
will a funder have an ‘AI strategy’ or expect this to be 
a core part of any strategic approach to drug 
discovery? Will a funder consider AI-focused funding 
applications alongside more traditional approaches or 
issue a specific call for AI-focused proposals? These 
choices have implications on the depth of AI 
expertise a funder may require and how extensively 
this is required across the organisation.

Funders can review their current capability mix 
and build a plan to fill any gaps as their 
engagement with AI topics grows over time 

If we truly want to drive any marked impact 
on human health with AI, funders, academics 
and industry need to work together. One 
single company can’t solve this alone

Vice President, ‘AI-first’ biotech 



Unlocking the potential of AI in Drug Discovery | 55

9. Bibliography and 
Acknowledgements



Unlocking the potential of AI in Drug Discovery | 56

9.1. Bibliography

[1]  N. Fleming, “How artificial intelligence is 
changing drug discovery,” Nature, vol. 557, no. 
7707, pp. S55–S57, May 2018, doi: 10.1038/
d41586-018-05267-x.

[2]  D. H. Freedman, “Hunting for New Drugs 
with AI,” Nature, vol. 576, no. 7787, pp. S49–S53, 
Dec. 2019, doi: 10.1038/d41586-019-03846-0.

[3]  O. J. Wouters, M. McKee, and J. Luyten, 
“Estimated Research and Development Investment 
Needed to Bring a New Medicine to Market, 2009-
2018,” JAMA, vol. 323, no. 9, pp. 844–853, Mar. 
2020, doi: 10.1001/jama.2020.1166.

[4]  R. C. Mohs and N. H. Greig, “Drug discovery 
and development: Role of basic biological research,” 
Alzheimers Dement (N Y), vol. 3, no. 4, pp. 651–657, 
Nov. 2017, doi: 10.1016/j.trci.2017.10.005.

[5]  J. Hughes, S. Rees, S. Kalindjian, and K. 
Philpott, “Principles of early drug discovery,” Br J 
Pharmacol, vol. 162, no. 6, pp. 1239–1249, Mar. 
2011, doi: 10.1111/j.1476-5381.2010.01127.x.

[6]  J. Jumper et al., “Highly accurate protein 
structure prediction with AlphaFold,” Nature, vol. 
596, no. 7873, Art. no. 7873, Aug. 2021, doi: 
10.1038/s41586-021-03819-2.

[7]  A. N. Ramesh, C. Kambhampati, J. R. T. 
Monson, and P. J. Drew, “Artificial intelligence in 
medicine.,” Ann R Coll Surg Engl, vol. 86, no. 5, pp. 
334–338, Sep. 2004, doi: 10.1308/147870804290.

[8]  L. Goyal et al., “First Results of RLY-4008, a 
Potent and Highly Selective FGFR2 Inhibitor in a 
First-in-Human Study in Patients with FGFR2-
Altered Cholangiocarcinoma and Multiple Solid 
Tumors”.

[9] “Adopting AI in Drug Discovery,” BCG Global, 
Mar. 23, 2022. https://www.bcg.com/
publications/2022/adopting-ai-in-pharmaceutical-
discovery 

[10] X. Li, Y. Xu, H. Yao, and K. Lin, “Chemical 
space exploration based on recurrent neural 
networks: applications in discovering kinase 
inhibitors,” Journal of Cheminformatics, vol. 12, no. 
1, p. 42, Jun. 2020, doi: 10.1186/s13321-020-
00446-3.

[11] “Absci First to Create and Validate De Novo 
Antibodies with Zero-Shot Generative AI | Absci 
Corp.” https://investors.absci.com/news-releases/
news-release-details/absci-first-create-and-validate-
de-novo-antibodies-zero-shot

[12] “BenevolentAI Achieves Further Milestones 
In AI-Enabled Target Identification Collaboration 
With AstraZeneca,” BenevolentAI (AMS: BAI). 
https://www.benevolent.com/news-and-media/
press-releases-and-in-media/benevolentai-
achieves-further-milestones-ai-enabled-target-
identification-collaboration-astrazeneca/

[13] G. MassonNov 8 and 2022 09:00am, “Amid 
‘biotech winter,’ Insilico turns up the heat with 
Sanofi deal worth $1.2B in biobucks,” Fierce 
Biotech, Nov. 08, 2022. https://www.fiercebiotech.
com/biotech/amid-biotech-winter-insilico-turns-
heat-sanofi-deal-worth-12b-biobucks 

[14] A. Patronov and I. Doytchinova, “T-cell 
epitope vaccine design by immunoinformatics,” 
Open Biol, vol. 3, no. 1, p. 120139, Jan. 2013, doi: 
10.1098/rsob.120139.

[15] “AI In Biologics Discovery: An Emerging 
Frontier,” In Vivo, Oct. 11, 2022. https://invivo.
pharmaintelligence.informa.com/IV146716/AI-In-
Biologics-Discovery-An-Emerging-Frontier 

[16] J. J. Han, “FDA Modernization Act 2.0 
allows for alternatives to animal testing,” Artif 
Organs, vol. 47, no. 3, pp. 449–450, Mar. 2023, doi: 
10.1111/aor.14503.

[17] C. Gorgulla et al., “An open-source drug 
discovery platform enables ultra-large virtual 
screens,” Nature, vol. 580, no. 7805, Art. no. 7805, 
Apr. 2020, doi: 10.1038/s41586-020-2117-z.

[18] G. Amendola and S. Cosconati, “PyRMD: A 
New Fully Automated AI-Powered Ligand-Based 
Virtual Screening Tool,” J. Chem. Inf. Model., vol. 61, 
no. 8, pp. 3835–3845, Aug. 2021, doi: 10.1021/acs.
jcim.1c00653.

[19] “Automating drug discovery | Nature 
Reviews Drug Discovery.” https://www.nature.com/
articles/nrd.2017.232?draft=collection

https://www.bcg.com/publications/2022/adopting-ai-in-pharmaceutical-discovery
https://www.bcg.com/publications/2022/adopting-ai-in-pharmaceutical-discovery
https://www.bcg.com/publications/2022/adopting-ai-in-pharmaceutical-discovery
https://investors.absci.com/news-releases/news-release-details/absci-first-create-and-validate-de-novo-antibodies-zero-shot
https://investors.absci.com/news-releases/news-release-details/absci-first-create-and-validate-de-novo-antibodies-zero-shot
https://investors.absci.com/news-releases/news-release-details/absci-first-create-and-validate-de-novo-antibodies-zero-shot
https://www.benevolent.com/news-and-media/press-releases-and-in-media/benevolentai-achieves-further-milestones-ai-enabled-target-identification-collaboration-astrazeneca/
https://www.benevolent.com/news-and-media/press-releases-and-in-media/benevolentai-achieves-further-milestones-ai-enabled-target-identification-collaboration-astrazeneca/
https://www.benevolent.com/news-and-media/press-releases-and-in-media/benevolentai-achieves-further-milestones-ai-enabled-target-identification-collaboration-astrazeneca/
https://www.benevolent.com/news-and-media/press-releases-and-in-media/benevolentai-achieves-further-milestones-ai-enabled-target-identification-collaboration-astrazeneca/
https://www.fiercebiotech.com/biotech/amid-biotech-winter-insilico-turns-heat-sanofi-deal-worth-12b-biobucks
https://www.fiercebiotech.com/biotech/amid-biotech-winter-insilico-turns-heat-sanofi-deal-worth-12b-biobucks
https://www.fiercebiotech.com/biotech/amid-biotech-winter-insilico-turns-heat-sanofi-deal-worth-12b-biobucks
https://invivo.pharmaintelligence.informa.com/IV146716/AI-In-Biologics-Discovery-An-Emerging-Frontier
https://invivo.pharmaintelligence.informa.com/IV146716/AI-In-Biologics-Discovery-An-Emerging-Frontier
https://invivo.pharmaintelligence.informa.com/IV146716/AI-In-Biologics-Discovery-An-Emerging-Frontier
https://www.nature.com/articles/nrd.2017.232?draft=collection
https://www.nature.com/articles/nrd.2017.232?draft=collection


Unlocking the potential of AI in Drug Discovery | 57

[20] S. Makin, “Could an algorithm predict the 
next pandemic?,” Nature, vol. 610, no. 7933, pp. 
S42–S44, Oct. 2022, doi: 10.1038/d41586-022-
03358-4.

[21] “Human Immunome Project.” https://www.
humanimmunomeproject.org/ 

[22] “CEPI’s 100 Days Mission,” CEPI. 
https://100days.cepi.net/

[23] “Preparing for pandemics.” https://www.
who.int/westernpacific/activities/preparing-for-
pandemics 

[24] D. V. S. Green et al., “BRADSHAW: a system 
for automated molecular design,” J Comput Aided 
Mol Des, vol. 34, no. 7, pp. 747–765, Jul. 2020, doi: 
10.1007/s10822-019-00234-8.

[25] “Exscientia-March-2023-presentation.pdf.” 
AAvailable: https://s28.q4cdn.com/460399462/files/
doc_presentations/2023/03/Exscientia-March-2023-
presentation.pdf

[26] “a15bfdeb-c705-45e6-b3a9-a4939471e117.
pdf.”. Available: https://ir.recursion.com/static-files/
a15bfdeb-c705-45e6-b3a9-a4939471e117

[27] “Critical assessment of computational 
Hit-Finding experiments | CACHE.” https://cache-
challenge.org/

[28] M. K. P. Jayatunga, W. Xie, L. Ruder, U. 
Schulze, and C. Meier, “AI in small-molecule drug 
discovery: a coming wave?,” Nature Reviews Drug 
Discovery, vol. 21, no. 3, pp. 175–176, Feb. 2022, 
doi: 10.1038/d41573-022-00025-1.

[29] S. M. Paul et al., “How to improve R&D 
productivity: the pharmaceutical industry’s grand 
challenge,” Nat Rev Drug Discov, vol. 9, no. 3, pp. 
203–214, Mar. 2010, doi: 10.1038/nrd3078.

[30] “Evaxion Biotech Reports Data from Phase 
1/2a Trials of EVX-01 and EVX-02 | Evaxion 
Biotech.” https://investors.evaxion-biotech.com/
news-releases/news-release-details/evaxion-
biotech-reports-data-phase-12a-trials-evx-01-and-
evx-02/ 

[31] “Takeda Announces Positive Phase 2b 
Psoriasis Results for Oral TYK2 Inhibitor.” https://
www.takeda.com/newsroom/newsreleases/2023/
takeda-announces-positive-results-in-phase-2b-
study-of-investigational-tak-279 

[32] “Relay Therapeutics Reports Fourth Quarter 
and Full Year 2022 Financial Results and Corporate 
Highlights | Relay Therapeutics.” https://ir.relaytx.
com/news-releases/news-release-details/relay-
therapeutics-reports-fourth-quarter-and-full-
year-2022/ 

[33] J. O. Park et al., “76MO Efficacy of RLY-
4008, a highly selective FGFR2 inhibitor in patients 
(pts) with an FGFR2-fusion or rearrangement (f/r), 
FGFR inhibitor (FGFRi)-naïve cholangiocarcinoma 
(CCA): ReFocus trial,” Annals of Oncology, vol. 33, 
pp. S1461–S1462, Nov. 2022, doi: 10.1016/j.
annonc.2022.10.112.

[34] “Nimbus Therapeutics Announces Positive 
Topline Results for Phase 2b Clinical Trial of 
Allosteric TYK2 Inhibitor in Psoriasis – Nimbus.” 
https://www.nimbustx.com/2022/11/30/nimbus-
therapeutics-announces-positive-topline-results-for-
phase-2b-clinical-trial-of-allosteric-tyk2-inhibitor-in-
psoriasis/ 

[35] “Takeda Completes Acquistion of Nimbus 
Therapeutics’ TYK2 Program Subsidiary” https://
www.takeda.com/newsroom/newsreleases/2023/
takeda-completes-acquisition-of-nimbus-
therapeutics-tyk2-program-subsidiary/ 

[36] I. M. Svane, “A Pilot Study of the Safety, 
Tolerability, Feasibility and Efficacy of Anti-PD-1 or 
Anti-PD-L1 in Combination With a Personalized 
Neo-antigen Vaccine in Advanced Solid Tumors 
(NeoPepVac),” clinicaltrials.gov, Clinical trial 
registration NCT03715985, Jan. 2022.. Available: 
https://clinicaltrials.gov/ct2/show/NCT03715985

[37] P. J. Richardson, B. W. S. Robinson, D. P. 
Smith, and J. Stebbing, “The AI-Assisted 
Identification and Clinical Efficacy of Baricitinib in 
the Treatment of COVID-19,” Vaccines (Basel), vol. 
10, no. 6, p. 951, Jun. 2022, doi: 10.3390/
vaccines10060951.

[38] “FDA Converts Emergency Approval Of 
Baricitinib — First Identified As A COVID Treatment 
By BenevolentAI — To A Full Approval,” 
BenevolentAI (AMS: BAI). https://www.benevolent.
com/news-and-media/blog-and-videos/fda-
converts-emergency-approval-baricitinib-first-
identified-covid-treatment-benevolentai-full-
approval/

[39] M. Tuccori et al., “An overview of the 
preclinical discovery and development of 
bamlanivimab for the treatment of novel coronavirus 
infection (COVID-19): reasons for limited clinical use 
and lessons for the future,” Expert Opin Drug 
Discov, pp. 1–12, doi: 
10.1080/17460441.2021.1960819.

[40] “Lilly’s neutralizing antibody bamlanivimab 
(LY-CoV555) receives FDA emergency use 
authorization for the treatment of recently diagnosed 
COVID-19 | Eli Lilly and Company.” https://investor.
lilly.com/news-releases/news-release-details/
lillys-neutralizing-antibody-bamlanivimab-ly-cov555-
receives-fda

https://www.humanimmunomeproject.org/
https://www.humanimmunomeproject.org/
https://100days.cepi.net/
https://www.who.int/westernpacific/activities/preparing-for-pandemics
https://www.who.int/westernpacific/activities/preparing-for-pandemics
https://www.who.int/westernpacific/activities/preparing-for-pandemics
https://s28.q4cdn.com/460399462/files/doc_presentations/2023/03/Exscientia-March-2023-presentation.pdf
https://s28.q4cdn.com/460399462/files/doc_presentations/2023/03/Exscientia-March-2023-presentation.pdf
https://s28.q4cdn.com/460399462/files/doc_presentations/2023/03/Exscientia-March-2023-presentation.pdf
https://ir.recursion.com/static-files/a15bfdeb-c705-45e6-b3a9-a4939471e117
https://ir.recursion.com/static-files/a15bfdeb-c705-45e6-b3a9-a4939471e117
https://cache-challenge.org/
https://cache-challenge.org/
https://investors.evaxion-biotech.com/news-releases/news-release-details/evaxion-biotech-reports-data-phase-12a-trials-evx-01-and-evx-02/
https://investors.evaxion-biotech.com/news-releases/news-release-details/evaxion-biotech-reports-data-phase-12a-trials-evx-01-and-evx-02/
https://investors.evaxion-biotech.com/news-releases/news-release-details/evaxion-biotech-reports-data-phase-12a-trials-evx-01-and-evx-02/
https://investors.evaxion-biotech.com/news-releases/news-release-details/evaxion-biotech-reports-data-phase-12a-trials-evx-01-and-evx-02/
https://www.takeda.com/newsroom/newsreleases/2023/takeda-announces-positive-results-in-phase-2b-study-of-investigational-tak-279
https://www.takeda.com/newsroom/newsreleases/2023/takeda-announces-positive-results-in-phase-2b-study-of-investigational-tak-279
https://www.takeda.com/newsroom/newsreleases/2023/takeda-announces-positive-results-in-phase-2b-study-of-investigational-tak-279
https://www.takeda.com/newsroom/newsreleases/2023/takeda-announces-positive-results-in-phase-2b-study-of-investigational-tak-279
https://ir.relaytx.com/news-releases/news-release-details/relay-therapeutics-reports-fourth-quarter-and-full-year-2022/
https://ir.relaytx.com/news-releases/news-release-details/relay-therapeutics-reports-fourth-quarter-and-full-year-2022/
https://ir.relaytx.com/news-releases/news-release-details/relay-therapeutics-reports-fourth-quarter-and-full-year-2022/
https://ir.relaytx.com/news-releases/news-release-details/relay-therapeutics-reports-fourth-quarter-and-full-year-2022/
https://www.nimbustx.com/2022/11/30/nimbus-therapeutics-announces-positive-topline-results-for-phase-2b-clinical-trial-of-allosteric-tyk2-inhibitor-in-psoriasis/
https://www.nimbustx.com/2022/11/30/nimbus-therapeutics-announces-positive-topline-results-for-phase-2b-clinical-trial-of-allosteric-tyk2-inhibitor-in-psoriasis/
https://www.nimbustx.com/2022/11/30/nimbus-therapeutics-announces-positive-topline-results-for-phase-2b-clinical-trial-of-allosteric-tyk2-inhibitor-in-psoriasis/
https://www.nimbustx.com/2022/11/30/nimbus-therapeutics-announces-positive-topline-results-for-phase-2b-clinical-trial-of-allosteric-tyk2-inhibitor-in-psoriasis/
https://www.takeda.com/newsroom/newsreleases/2023/takeda-completes-acquisition-of-nimbus-therapeutics-tyk2-program-subsidiary/
https://www.takeda.com/newsroom/newsreleases/2023/takeda-completes-acquisition-of-nimbus-therapeutics-tyk2-program-subsidiary/
https://www.takeda.com/newsroom/newsreleases/2023/takeda-completes-acquisition-of-nimbus-therapeutics-tyk2-program-subsidiary/
https://www.takeda.com/newsroom/newsreleases/2023/takeda-completes-acquisition-of-nimbus-therapeutics-tyk2-program-subsidiary/
https://clinicaltrials.gov/ct2/show/NCT03715985
https://www.benevolent.com/news-and-media/blog-and-videos/fda-converts-emergency-approval-baricitinib-first-identified-covid-treatment-benevolentai-full-approval/
https://www.benevolent.com/news-and-media/blog-and-videos/fda-converts-emergency-approval-baricitinib-first-identified-covid-treatment-benevolentai-full-approval/
https://www.benevolent.com/news-and-media/blog-and-videos/fda-converts-emergency-approval-baricitinib-first-identified-covid-treatment-benevolentai-full-approval/
https://www.benevolent.com/news-and-media/blog-and-videos/fda-converts-emergency-approval-baricitinib-first-identified-covid-treatment-benevolentai-full-approval/
https://www.benevolent.com/news-and-media/blog-and-videos/fda-converts-emergency-approval-baricitinib-first-identified-covid-treatment-benevolentai-full-approval/
https://investor.lilly.com/news-releases/news-release-details/lillys-neutralizing-antibody-bamlanivimab-ly-cov555-receives-fda
https://investor.lilly.com/news-releases/news-release-details/lillys-neutralizing-antibody-bamlanivimab-ly-cov555-receives-fda
https://investor.lilly.com/news-releases/news-release-details/lillys-neutralizing-antibody-bamlanivimab-ly-cov555-receives-fda
https://investor.lilly.com/news-releases/news-release-details/lillys-neutralizing-antibody-bamlanivimab-ly-cov555-receives-fda


Unlocking the potential of AI in Drug Discovery | 58

[41] T. Hanser, “Federated learning for molecular 
discovery,” Current Opinion in Structural Biology, 
vol. 79, p. 102545, Apr. 2023, doi: 10.1016/j.
sbi.2023.102545.

[42] “Substra - powering federated learning 
research,” OWKIN. https://owkin.com/substra/

[43] Jha, A., Khan, Y., Mehdi, M. et al. Towards 
precision medicine: discovering novel gynecological 
cancer biomarkers and pathways using linked data. 
J Biomed Semant 8, 40 (2017). https://doi.
org/10.1186/s13326-017-0146-9

[44] “FAIR Principles,” GO FAIR. https://www.
go-fair.org/fair-principles/ 

[45] D. Vemula, P. Jayasurya, V. Sushmitha, Y. N. 
Kumar, and V. Bhandari, “CADD, AI and ML in drug 
discovery: A comprehensive review,” European 
Journal of Pharmaceutical Sciences, vol. 181, p. 
106324, Feb. 2023, doi: 10.1016/j.ejps.2022.106324.

[46] F. I. Saldívar-González, V. D. Aldas-Bulos, J. 
L. Medina-Franco, and F. Plisson, “Natural product 
drug discovery in the artificial intelligence era,” 
Chemical Science, vol. 13, no. 6, pp. 1526–1546, 
2022, doi: 10.1039/D1SC04471K.

[47] “Sanofi, Pfizer and More Use Upskilling to 
Solve the Life Science Talent Shortage,” BioSpace. 
https://www.biospace.com/article/upskilling-a-
solution-to-the-life-science-talent-shortage/ 

[48] T. Ciecierski-Holmes, R. Singh, M. Axt, S. 
Brenner, and S. Barteit, “Artificial intelligence for 
strengthening healthcare systems in low- and 
middle-income countries: a systematic scoping 
review,” npj Digit. Med., vol. 5, no. 1, Art. no. 1, Oct. 
2022, doi: 10.1038/s41746-022-00700-y.

[49] S. R. P. Franzen, C. Chandler, and T. Lang, 
“Health research capacity development in low and 
middle income countries: reality or rhetoric? A 
systematic meta-narrative review of the qualitative 
literature,” BMJ Open, vol. 7, no. 1, p. e012332, Jan. 
2017, doi: 10.1136/bmjopen-2016-012332.

[50] A. Hosny and H. J. W. L. Aerts, “Artificial 
intelligence for global health,” Science, vol. 366, no. 
6468, pp. 955–956, Nov. 2019, doi: 10.1126/
science.aay5189.

[51] H. Ejaz, H. McGrath, B. L. Wong, A. Guise, 
T. Vercauteren, and J. Shapey, “Artificial intelligence 
and medical education: A global mixed-methods 
study of medical students’ perspectives,” Digit 
Health, vol. 8, p. 20552076221089100, May 2022, 
doi: 10.1177/20552076221089099.

[52] “OMSF Projects,” May 30, 2018. https://
omsf.io/projects/project-list/

[53] “Home - CASP15.” https://predictioncenter.
org/casp15/index.cgi

[54] OpenAI, “GPT-4 Technical Report.” arXiv, Mar. 
27, 2023. Available: http://arxiv.org/abs/2303.08774

[55] M. Varadi et al., “AlphaFold Protein 
Structure Database: massively expanding the 
structural coverage of protein-sequence space with 
high-accuracy models,” Nucleic Acids Res, vol. 50, 
no. D1, pp. D439–D444, Nov. 2021, doi: 10.1093/
nar/gkab1061.

[56] Y. Zhao et al., “PO2RDF: representation of 
real-world data for precision oncology using 
resource description framework,” BMC Medical 
Genomics, vol. 15, no. 1, p. 167, Jul. 2022, doi: 
10.1186/s12920-022-01314-9.

[57] H. Landi, “Precision medicine company 
Tempus inks 3rd major pharma deal, securing nearly 
$1B revenue boost,” Fierce Healthcare, Mar. 02, 
2023. https://www.fiercehealthcare.com/health-
tech/precision-medicine-company-tempus-inks-3rd-
major-pharma-deal-securing-nearly-1b-revenue

[58] “Immunai Raises $215 Million to Accelerate 
Development of Its Immune-First Drug Actuary 
Platform,” WebWire. https://www.webwire.com/
ViewPressRel.asp?aId=280863

[59] “Integrating multimodal data to meet clinical 
challenges,” OWKIN. https://owkin.com/
publications-and-news/blogs/integrating-
multimodal-data-to-meet-clinical-challenges/

[60] E. Carron, “Tempus Launches Psychiatric 
Real-World Data Program to Advance Personalized 
Medicine,” Tempus, May 20, 2022. https://www.
tempus.com/news/pr/tempus-launches-psychiatric-
real-world-data-program-to-advance-personalized-
medicine/

[61] S. Rodriguez et al., “Machine learning 
identifies candidates for drug repurposing in 
Alzheimer’s disease,” Nat Commun, vol. 12, no. 1, 
Art. no. 1, Feb. 2021, doi: 10.1038/s41467-021-
21330-0.

[62] R. L. S. Exchange, “Poolbeg Pharma PLC 
Announces Influenza AI model build completed,” 
ACCESSWIRE News Room, Nov. 29, 2022. https://
www.accesswire.com/729168/Poolbeg-Pharma-
PLC-Announces-Influenza-AI-model-build-
completed

[63] “Atomwise Opens Applications for Historic 
AI Drug Discovery Awards,” Atomwise, Apr. 09, 
2017. https://www.atomwise.com/2017/04/09/
atomwise-opens-applications-for-historic-ai-drug-
discovery-awards/

[64] “Exscientia applies Genome scale AI-Drug 
Discovery to critical global health challenges - 
Company receives $4.2M grant from Bill & Melinda 
Gates Foundation to identify new targets and leads 
for malaria, tuberculosis, and non-hormonal 
contraception.” https://investors.exscientia.ai/
press-releases/press-release-details/2020/
Exscientia-applies-Genome-scale-AI-Drug-
Discovery-to-critical-global-health-challenges---
Company-receives-4.2M-grant-from-Bill--Melinda-
Gates-Foundation-to-identify-new-targets-and-
leads-for-malaria-tuberculosis-and-non-hormonal-
contraception/default.aspx

https://owkin.com/substra/
https://doi.org/10.1186/s13326-017-0146-9
https://doi.org/10.1186/s13326-017-0146-9
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
https://www.biospace.com/article/upskilling-a-solution-to-the-life-science-talent-shortage/
https://www.biospace.com/article/upskilling-a-solution-to-the-life-science-talent-shortage/
https://omsf.io/projects/project-list/
https://omsf.io/projects/project-list/
https://predictioncenter.org/casp15/index.cgi
https://predictioncenter.org/casp15/index.cgi
http://arxiv.org/abs/2303.08774
https://www.fiercehealthcare.com/health-tech/precision-medicine-company-tempus-inks-3rd-major-pharma-deal-securing-nearly-1b-revenue
https://www.fiercehealthcare.com/health-tech/precision-medicine-company-tempus-inks-3rd-major-pharma-deal-securing-nearly-1b-revenue
https://www.fiercehealthcare.com/health-tech/precision-medicine-company-tempus-inks-3rd-major-pharma-deal-securing-nearly-1b-revenue
https://www.webwire.com/ViewPressRel.asp?aId=280863
https://www.webwire.com/ViewPressRel.asp?aId=280863
https://owkin.com/publications-and-news/blogs/integrating-multimodal-data-to-meet-clinical-challenges/
https://owkin.com/publications-and-news/blogs/integrating-multimodal-data-to-meet-clinical-challenges/
https://owkin.com/publications-and-news/blogs/integrating-multimodal-data-to-meet-clinical-challenges/
https://www.tempus.com/news/pr/tempus-launches-psychiatric-real-world-data-program-to-advance-personalized-medicine/
https://www.tempus.com/news/pr/tempus-launches-psychiatric-real-world-data-program-to-advance-personalized-medicine/
https://www.tempus.com/news/pr/tempus-launches-psychiatric-real-world-data-program-to-advance-personalized-medicine/
https://www.tempus.com/news/pr/tempus-launches-psychiatric-real-world-data-program-to-advance-personalized-medicine/
https://www.accesswire.com/729168/Poolbeg-Pharma-PLC-Announces-Influenza-AI-model-build-completed
https://www.accesswire.com/729168/Poolbeg-Pharma-PLC-Announces-Influenza-AI-model-build-completed
https://www.accesswire.com/729168/Poolbeg-Pharma-PLC-Announces-Influenza-AI-model-build-completed
https://www.accesswire.com/729168/Poolbeg-Pharma-PLC-Announces-Influenza-AI-model-build-completed
https://www.atomwise.com/2017/04/09/atomwise-opens-applications-for-historic-ai-drug-discovery-awards/
https://www.atomwise.com/2017/04/09/atomwise-opens-applications-for-historic-ai-drug-discovery-awards/
https://www.atomwise.com/2017/04/09/atomwise-opens-applications-for-historic-ai-drug-discovery-awards/
https://investors.exscientia.ai/press-releases/press-release-details/2020/Exscientia-applies-Genome-scale-AI-Drug-Discovery-to-critical-global-health-challenges---Company-receives-4.2M-grant-from-Bill--Melinda-Gates-Foundation-to-identify-new-targets-and-leads-for-malaria-tuberculosis-and-non-hormonal-contraception/default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2020/Exscientia-applies-Genome-scale-AI-Drug-Discovery-to-critical-global-health-challenges---Company-receives-4.2M-grant-from-Bill--Melinda-Gates-Foundation-to-identify-new-targets-and-leads-for-malaria-tuberculosis-and-non-hormonal-contraception/default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2020/Exscientia-applies-Genome-scale-AI-Drug-Discovery-to-critical-global-health-challenges---Company-receives-4.2M-grant-from-Bill--Melinda-Gates-Foundation-to-identify-new-targets-and-leads-for-malaria-tuberculosis-and-non-hormonal-contraception/default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2020/Exscientia-applies-Genome-scale-AI-Drug-Discovery-to-critical-global-health-challenges---Company-receives-4.2M-grant-from-Bill--Melinda-Gates-Foundation-to-identify-new-targets-and-leads-for-malaria-tuberculosis-and-non-hormonal-contraception/default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2020/Exscientia-applies-Genome-scale-AI-Drug-Discovery-to-critical-global-health-challenges---Company-receives-4.2M-grant-from-Bill--Melinda-Gates-Foundation-to-identify-new-targets-and-leads-for-malaria-tuberculosis-and-non-hormonal-contraception/default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2020/Exscientia-applies-Genome-scale-AI-Drug-Discovery-to-critical-global-health-challenges---Company-receives-4.2M-grant-from-Bill--Melinda-Gates-Foundation-to-identify-new-targets-and-leads-for-malaria-tuberculosis-and-non-hormonal-contraception/default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2020/Exscientia-applies-Genome-scale-AI-Drug-Discovery-to-critical-global-health-challenges---Company-receives-4.2M-grant-from-Bill--Melinda-Gates-Foundation-to-identify-new-targets-and-leads-for-malaria-tuberculosis-and-non-hormonal-contraception/default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2020/Exscientia-applies-Genome-scale-AI-Drug-Discovery-to-critical-global-health-challenges---Company-receives-4.2M-grant-from-Bill--Melinda-Gates-Foundation-to-identify-new-targets-and-leads-for-malaria-tuberculosis-and-non-hormonal-contraception/default.aspx


Unlocking the potential of AI in Drug Discovery | 59

[65] “Exscientia enters $70M collaboration to 
develop anti-viral therapeutics against Coronavirus 
and other viruses with pandemic potential.” https://
investors.exscientia.ai/press-releases/press-release-
details/2021/exscientia-enters-70m-collaboration-
to-develop-anti-viral-therapeutics-against-
coronavirus-and-other-viruses-with-pandemic-
potential/Default.aspx

[66] “AI Driven De Novo Design with REINVENT 
• BioSolveIT,” BioSolveIT. https://www.biosolveit.de/
webinar/ai-driven-de-novo-design-with-reinvent/ 

[67] S. Winks, J. G. Woodland, G. ‘Colin’ Pillai, 
and K. Chibale, “Fostering drug discovery and 
development in Africa,” Nat Med, vol. 28, no. 8, Art. 
no. 8, Aug. 2022, doi: 10.1038/s41591-022-01885-1.

[68] H. Foundation, “AI/ML Workshop Opens 
New Doors for Young Scientists | H3D Foundation | 
Pioneering World-Class Drug Discovery in Africa,” 
H3D Foundation, Nov. 22, 2022. https://
h3dfoundation.org/aiml-workshop-opens-new-
doors-for-young-scientists/

[69] “Indaba Grand Challenge: Curing 
Leishmaniasis,” Zindi. https://zindi.africa/
competitions/indaba-grand-challenge-curing-
leishmaniasis

[70] J. Smith, H. Xu, X. Li, L. Yang, and J. M. 
Gutierrez, “Compound Screening with Deep 
Learning for Neglected Diseases: Leishmaniasis.” 
bioRxiv, p. 2021.10.02.462874, Oct. 02, 2021. doi: 
10.1101/2021.10.02.462874.

[71] C. H. Lee et al., “A robust deep learning 
platform to predict CD8+ T-cell epitopes.” bioRxiv, 
p. 2022.12.29.522182, Dec. 29, 2022. doi: 
10.1101/2022.12.29.522182.

[72] C. Soto et al., “High frequency of shared 
clonotypes in human B cell receptor repertoires,” 
Nature, vol. 566, no. 7744, Art. no. 7744, Feb. 2019, 
doi: 10.1038/s41586-019-0934-8.

[73] “evaxion-corpdeck-aug-2022_pdf.pdf.” 
Available: https://www.evaxion-biotech.com/media/
nnmcnfd3/evaxion-corpdeck-aug-2022_pdf.pdf

[74] “Moderna Announces First Participant Dosed 
in a Phase 1 Trial of its Nipah Virus mRNA Vaccine, 
mRNA-1215.” https://investors.modernatx.com/
news/news-details/2022/Moderna-Announces-First-
Participant-Dosed-in-a-Phase-1-Trial-of-its-Nipah-
Virus-mRNA-Vaccine-mRNA-1215/default.aspx

[75] “Moderna Announces Its Global Public 
Health Strategy.” https://investors.modernatx.com/
news/news-details/2022/Moderna-Announces-Its-
Global-Public-Health-Strategy/default.aspx

[76] T. M. Chidyausiku et al., “De novo design of 
immunoglobulin-like domains,” Nat Commun, vol. 
13, no. 1, Art. no. 1, Oct. 2022, doi: 10.1038/
s41467-022-33004-6.

[77] “ABlooper: fast accurate antibody CDR loop 
structure prediction with accuracy estimation | 
Bioinformatics | Oxford Academic.” https://
academic.oup.com/bioinformatics/
article/38/7/1877/6517780

[78] D. Prihoda, “BioPhi Antibody design 
platform.” https://biophi.dichlab.org/

[79] J. A. Ruffolo, L.-S. Chu, S. P. Mahajan, and 
J. J. Gray, “Fast, accurate antibody structure 
prediction from deep learning on massive set of 
natural antibodies.” bioRxiv, p. 2022.04.20.488972, 
Apr. 21, 2022. doi: 10.1101/2022.04.20.488972.

[80] R. Evans et al., “Protein complex prediction 
with AlphaFold-Multimer.” bioRxiv, p. 
2021.10.04.463034, Mar. 10, 2022. doi: 
10.1101/2021.10.04.463034.

[81] “What is Rosetta@home?” https://boinc.
bakerlab.org/rosetta/rah/rah_about.php

[82] “AbCellera Receives Grant to Help Fight 
Tuberculosis.” https://investors.abcellera.com/news/
news-releases/2017/AbCellera-Receives-Grant-to-
Help-Fight-Tuberculosis/default.aspx

[83] “AbCellera Signs Agreement with Global 
Health Foundation to Fight Infectious Disease.” 
https://investors.abcellera.com/news/news-
releases/2019/AbCellera-Signs-Agreement-with-
Global-Health-Foundation-to-Fight-Infectious-
Disease/default.aspx

[84] C. Hale, “Pfizer, AstraZeneca, Merck KGaA-
backed Israeli AI incubator launches first biopharma 
startup,” Fierce Biotech, Sep. 28, 2022. https://
www.fiercebiotech.com/medtech/israeli-ai-
incubator-launches-drug-discovery-startup-backed-
pfizer-astrazeneca-merck-kgaa

[85] “TransCelerate and BioCelerate Launch New 
Technology Platform to Enable R&D Data Sharing,” 
Bloomberg.com, Jul. 31, 2018. Available: https://
www.bloomberg.com/press-releases/2018-07-31/
transcelerate-and-biocelerate-launch-new-
technology-platform-to-enable-r-d-data-sharing

[86] “Chagas Disease | Infectious Diseases Data 
Observatory.” https://www.iddo.org/research-
themes/chagas-disease

https://investors.exscientia.ai/press-releases/press-release-details/2021/exscientia-enters-70m-collaboration-to-develop-anti-viral-therapeutics-against-coronavirus-and-other-viruses-with-pandemic-potential/Default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2021/exscientia-enters-70m-collaboration-to-develop-anti-viral-therapeutics-against-coronavirus-and-other-viruses-with-pandemic-potential/Default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2021/exscientia-enters-70m-collaboration-to-develop-anti-viral-therapeutics-against-coronavirus-and-other-viruses-with-pandemic-potential/Default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2021/exscientia-enters-70m-collaboration-to-develop-anti-viral-therapeutics-against-coronavirus-and-other-viruses-with-pandemic-potential/Default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2021/exscientia-enters-70m-collaboration-to-develop-anti-viral-therapeutics-against-coronavirus-and-other-viruses-with-pandemic-potential/Default.aspx
https://investors.exscientia.ai/press-releases/press-release-details/2021/exscientia-enters-70m-collaboration-to-develop-anti-viral-therapeutics-against-coronavirus-and-other-viruses-with-pandemic-potential/Default.aspx
https://www.biosolveit.de/webinar/ai-driven-de-novo-design-with-reinvent/
https://www.biosolveit.de/webinar/ai-driven-de-novo-design-with-reinvent/
https://h3dfoundation.org/aiml-workshop-opens-new-doors-for-young-scientists/
https://h3dfoundation.org/aiml-workshop-opens-new-doors-for-young-scientists/
https://h3dfoundation.org/aiml-workshop-opens-new-doors-for-young-scientists/
https://zindi.africa/competitions/indaba-grand-challenge-curing-leishmaniasis
https://zindi.africa/competitions/indaba-grand-challenge-curing-leishmaniasis
https://zindi.africa/competitions/indaba-grand-challenge-curing-leishmaniasis
https://www.evaxion-biotech.com/media/nnmcnfd3/evaxion-corpdeck-aug-2022_pdf.pdf
https://www.evaxion-biotech.com/media/nnmcnfd3/evaxion-corpdeck-aug-2022_pdf.pdf
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-First-Participant-Dosed-in-a-Phase-1-Trial-of-its-Nipah-Virus-mRNA-Vaccine-mRNA-1215/default.aspx
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-First-Participant-Dosed-in-a-Phase-1-Trial-of-its-Nipah-Virus-mRNA-Vaccine-mRNA-1215/default.aspx
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-First-Participant-Dosed-in-a-Phase-1-Trial-of-its-Nipah-Virus-mRNA-Vaccine-mRNA-1215/default.aspx
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-First-Participant-Dosed-in-a-Phase-1-Trial-of-its-Nipah-Virus-mRNA-Vaccine-mRNA-1215/default.aspx
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-Its-Global-Public-Health-Strategy/default.aspx
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-Its-Global-Public-Health-Strategy/default.aspx
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-Its-Global-Public-Health-Strategy/default.aspx
https://academic.oup.com/bioinformatics/article/38/7/1877/6517780
https://academic.oup.com/bioinformatics/article/38/7/1877/6517780
https://academic.oup.com/bioinformatics/article/38/7/1877/6517780
https://biophi.dichlab.org/
https://boinc.bakerlab.org/rosetta/rah/rah_about.php
https://boinc.bakerlab.org/rosetta/rah/rah_about.php
https://investors.abcellera.com/news/news-releases/2017/AbCellera-Receives-Grant-to-Help-Fight-Tuberculosis/default.aspx
https://investors.abcellera.com/news/news-releases/2017/AbCellera-Receives-Grant-to-Help-Fight-Tuberculosis/default.aspx
https://investors.abcellera.com/news/news-releases/2017/AbCellera-Receives-Grant-to-Help-Fight-Tuberculosis/default.aspx
https://investors.abcellera.com/news/news-releases/2019/AbCellera-Signs-Agreement-with-Global-Health-Foundation-to-Fight-Infectious-Disease/default.aspx
https://investors.abcellera.com/news/news-releases/2019/AbCellera-Signs-Agreement-with-Global-Health-Foundation-to-Fight-Infectious-Disease/default.aspx
https://investors.abcellera.com/news/news-releases/2019/AbCellera-Signs-Agreement-with-Global-Health-Foundation-to-Fight-Infectious-Disease/default.aspx
https://investors.abcellera.com/news/news-releases/2019/AbCellera-Signs-Agreement-with-Global-Health-Foundation-to-Fight-Infectious-Disease/default.aspx
https://www.fiercebiotech.com/medtech/israeli-ai-incubator-launches-drug-discovery-startup-backed-pfizer-astrazeneca-merck-kgaa
https://www.fiercebiotech.com/medtech/israeli-ai-incubator-launches-drug-discovery-startup-backed-pfizer-astrazeneca-merck-kgaa
https://www.fiercebiotech.com/medtech/israeli-ai-incubator-launches-drug-discovery-startup-backed-pfizer-astrazeneca-merck-kgaa
https://www.fiercebiotech.com/medtech/israeli-ai-incubator-launches-drug-discovery-startup-backed-pfizer-astrazeneca-merck-kgaa
https://www.bloomberg.com/press-releases/2018-07-31/transcelerate-and-biocelerate-launch-new-technology-platform-to-enable-r-d-data-sharing
https://www.bloomberg.com/press-releases/2018-07-31/transcelerate-and-biocelerate-launch-new-technology-platform-to-enable-r-d-data-sharing
https://www.bloomberg.com/press-releases/2018-07-31/transcelerate-and-biocelerate-launch-new-technology-platform-to-enable-r-d-data-sharing
https://www.bloomberg.com/press-releases/2018-07-31/transcelerate-and-biocelerate-launch-new-technology-platform-to-enable-r-d-data-sharing
https://www.iddo.org/research-themes/chagas-disease
https://www.iddo.org/research-themes/chagas-disease


9.2. Acknowledgements

This report was commissioned by the Wellcome 
Trust and authored by Boston Consulting Group 
(BCG), drawing on research and analysis conducted 
by BCG. Input and oversight from the Wellcome 
Trust was led by Colleen Loynachan, Harriet 
Unsworth, Kim Donoghue, Raphael Sonabend and 
Sabrina Lamour-Julien. The BCG team was led by 
Andrew Rodriguez, Christoph Meier, Emily Serazin, 
John Gooch, Priyanka Aggarwal, Asher Steene, 
Madura Jayatunga, Shruti Nayak, and Will Randall 
with contributions from Lotte Bruens, Priyanka 
Harley, Maria Antunica, Methuna Kailanathan and 
Nana Balser.

The authors would like to thank the members of the 
Expert Scientific Advisory Committee for their 
support, insights, and guidance to contextualise and 
amplify this work. Their contributions were vital in 
validating and refining findings presented in this 
report. The committee consisted of:

• Alain Bouckenooghe – CSO, Hilleman 
Laboratories Singapore

• Charlotte Deane – Chief Scientist, Exscientica/
University of Oxford

• Chris Rackauckas – Research Affiliate, MIT; 
Lead Developer, SciML and Director of Scientific 
Research, Pumas-AI.

• Dorcas Osei-Safo – Associate Professor, 
University of Ghana

• Emna Harigua – Research team leader, Instituit 
Pasteur de Tunis

• Ivan Griffin – COO, Benevolent AI

• Joseph Lehar – SVP Business Strategy, Owkin

• Jing Li – CEO, VelaVigo

• Kelly Chibale – Professor, University of 
Cape Town

• Ziv Bar-Joseph – R&D Data & Comp. Sci, Sanofi

In addition, the project team extends sincere thanks 
to the 55 experts who provided their time and 
insights through expert interviews, as well as the 
102 experts who participated in the online survey. 
These experts were industry professionals and 
academics from multiple geographies and across 
varying tenures that provided an objective 
perspective on the topic and were instrumental in 
informing the insights presented in this report. 

The views and opinions expressed in this report 
represent those of the joint Wellcome Trust / The 
Boston Consulting Group project team, and do not 
necessarily reflect those of the any specific 
individual or organisation mentioned above.

Unlocking the potential of AI in Drug Discovery | 60



Unlocking the potential of AI in Drug Discovery | 61

10. Appendix



Unlocking the potential of AI in Drug Discovery | 62

10.1. Glossary

Use cases definitions
1.1: High throughput, unbiased screens run for drug 

candidates that modulate disease-relevant 
phenotypes to enable the identification of 
(novel) molecules that act on disease pathways

1.2: Using AI to analyse large datasets and disparate 
sources to uncover indirect associations 
between disease and cellular target(s), as well 
as interactions between drugs

1.3: Knowledge graphs organise data from multiple 
sources to represent a network of real-world 
entities (e.g., objects, situations, concepts) and 
illustrate the relationship between them

1.4: Prediction of 3D protein structure based on 
amino acid sequence and subsequent dynamic 
protein interaction modelling to accurately 
model protein binding pockets, protein-protein 
binding and protein-ligand binding

1.5: Identification of diagnostic and prognostic 
biomarkers (molecules by which a particular 
disease etc. can be recognised) to support drug 
development and treatments

2.1: Computational techniques used to search 
libraries of small molecules to identify structures 
most likely to bind to a drug target; using 
computer simulations to analyse the physical 
movements of each atom and molecule

2.2: AI analysis of molecule structure and 
experimental data to predict the biological 
activities of small molecules

2.3: The design of novel chemical entities that fit a 
set of constraints using computational growth 
algorithms; often used to generate lead-like 
small molecules after analysis of prospective 
protein targets

2.4: The AI analysis, and ranking, of all possible 
synthetic routes for a given compound 
according to various metrics of synthetic 
accessibility

2.5: Prediction and multiparameter optimisation of 
small molecule pharmacokinetic properties 
using AI

3.1: Use of AI to predict potential (conserved) 
antigenic sites on a protein, simulate molecular 
docking using antibody sequence and structure 
to predict binding surfaces or Ag-Ab binding

3.2: Optimisation of coding and non-coding 
sequences to improve mRNA stability and 
translation efficiency and, therefore, protein 
production

3.3: Optimisation of mRNA delivery systems to 
enhance transportation into the cell and reduce 
toxicity (e.g., through improving lipid 
composition, molar ratios, and structure)

4.1: High-throughput screening of natural antibody 
repertoires for identification and selection of 
optimal therapeutic antibodies, and to 
extrapolate to further evolutionary repertoires 
that have not yet been observed

4.2: Simulation of molecular docking using antibody 
sequence and structure to predict Ab-Ag 
binding

4.3: Creation of optimised antibody sequences 
beyond natural repertoires (incl. assessing 
impact of mutations and PTMs), and in silico 
library design

4.4: Prediction of protein properties based on their 
sequence (e.g., solubility, aggregation)

4.5: Modification of antibody protein sequences 
from non-human species to increase their 
similarity to antibody variants produced 
naturally in humans

5.1: Employment of AI for the pre-emptive flagging 
of drug candidates for predicted toxic and/or 
off-target effects

5.2: The modelling of pharmacokinetics and 
pharmacodynamics to predict the time course 
of effect intensity in response to the 
administration of a drug dose

5.3: The modelling of dynamic interactions between 
biological systems and drugs; allows prediction 
of efficacy, and the reasons behind it
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Absorption, distribution, metabolism, excretion, toxicity

Artificial Intelligence 

Critical Assessment of Computational Hit-finding Experiments

Critical Assessment of Protein Structure Prediction 

Drug Discovery

Findable, Accessible, Interoperable, Usable

Food and Drug Administration

Generative Adversarial Networks 

Generative Pre-trained Transformer

Emergency Use Authorisation 

High-income countries 

Human Immunodeficiency Virus

Low-to-middle income countries

Large Language Models 

Longitudinal population studies 

Machine Learning

Mental Health

Major Histocompatibility Complex 

Neglected tropical diseases

Obsessive-compulsive disorder

Pharmacokinetic/pharmacodynamic

Quantitative Systems Pharmacology 

Research and Development

Simplified Molecular-Input Line-Entry Systems

Therapeutic Area

10.2. Abbreviations 

ADME(T): 

AI: 

CACHE: 

CASP:

DD: 

FAIR: 

FDA: 

GANs: 

GPT: 

EUA:

HICs: 

HIV: 

LMICs: 

LLMs:

LPS: 

ML: 

MH: 

MHC:

NTDs:

OCD: 

PK/PD: 

QSP: 

R&D:

SMILEs: 

TA: 



Figure 20 shows an analysis of publications on 
AI in drug discovery published in the last 5 years 
by sub-use case. The most frequently published 
sub-use cases within understanding disease were 
(-omics) data mining to link target to disease and 
drug repurposing due to the high quality and quantity 
of data available to train AI models. Within small 

Figure 20 – Publications on AI in drug discovery published in the last five years, by sub-use case

1. Epitope selection, prediction and binding; Codon, 5’ and 3’ UTR optimisation; LNP optimisation. 2. mAb library screening and repertoire prediction; Ag-Ab binding 
prediction and optimisation; de novo antibody design ; Antibody property prediction; Humanisation 3. QSP modelling
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molecule design and optimisation, AI was most 
frequently applied to sub-use cases pertaining to 
virtual screening and binding analysis and structure 
activity relationship prediction, which is likely driven 
by the availability of well-validated tools. For vaccines 
design and optimisation use cases, epitope selection, 
prediction and binding sub-use case dominates due 

to the focus on better understanding the molecular 
basis of immunity. AI activity within antibody design 
and optimisation is focused on antibody property 
prediction. A large proportion of AI work in safety and 
toxicity is concentrated on toxicology and off-target 
effect prediction.

10.3. Sub-use case Analysis
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Understanding disease Small molecule design and optimisation Vaccines1/Antibody²
design and optimisation

Safety and 
toxicity3 
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Protein structure and dynamics modelling11%
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(-omics) data mining
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Epitope 
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and binding
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Ligand synthesisability

de novo ligand generation

Structure activity relationship prediction

Virtual screening and binding analysis
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PK/PD 
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and off-target 

effect 
prediction
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The ‘AI-first’ biotechs analysed within this landscaping report are listed in the table below. Those marked with (*) were included in the pipeline analysis based on the 
source data used. Those marked with (#) are public ‘AI-first’ biotechs founded in the last 10 years. 

10.4. ‘AI-first’ Biotechs

1910 Genetics Athos Therapeutics, Inc. * Cloud Pharmaceuticals * Entos Pharmaceuticals

3T Biosciences * Atomwise * Clover Therapeutics Entos, Inc.

A2A Pharmaceuticals * Auransa Collaborations Pharmaceuticals Enveda Biosciences *

AbCellera Biologics *# BenevolentAI *# Compugen Ltd. * Envisagenics *

AbSci Berg Computational Medicine Beijing Co., Ltd. EpiVax

Accutar Biotechnology * BigHat Biosciences Creyon Bio, Inc. EpiVax Therapeutics

Acelot Inc * BioAge Labs * Cyclica e-therapeutics *

AcuraStem BioMap * CytoReason Evaxion Biotech

Adagene * Biomatter Designs Data2Discovery Exscientia *#

Adapsyn Bioscience Biorelate Deargen Frontier Medicines *

Adimab * BioSymetrics Deep Intelligent Pharma Gain Therapeutics *#

AI Therapeutics biotx.ai Deepcell Galapagos

Ai-biopharma Biovista DeepCure Galixier

Aimble BioXcel Therapeutics *# DeepLife Galixir

Ainnocence LLC Black Diamond Therapeutics *# DeepMatter Gandeeva Therapeutics Inc.

Anagenex, Inc. C4X Discovery DeepTrait GATC Health

Anima Biotech CardiaTec Biosciences LTD Delta 4 Gatehouse Bio

Animol Discovery, Inc. Causaly Denovicon Therapeutics Generate Biomedicines

Antiverse Celeris Therapeutics * Differentiated Therapeutics, Inc. Genesis Therapeutics

Aqemia Cellarity Eleven Therapeutics Ltd Genialis

Arctoris * Celsius Therapeutics * Elucidata Gero

Aria Pharmaceuticals (Formerly: TwoXAR) * Charm Therapeutics Empiric Logic GigaCeuticals

Arpeggio Biosciences, Inc. * CHARM Therapeutics Inc. Empirico * Glympse Bio

Artivila Therapeutics * ChemAlive SA Engine Biosciences * GNS Healthcare

Asimov ChemPass ENSEM Therapeutics Inc. Gritstone Bio (formerly -- Gritstone Oncology) *#



Unlocking the potential of AI in Drug Discovery | 66

GT Apeiron Therapeutics * Micar21 Pharos I&BT Co., Ltd * Shanghai GV20 Biotechnology Co., Ltd.

Harmonic Discovery Inc. Micrographia Bio Pharos iBio * Shanghai Matwings Technology Co., Ltd.

Healx * MindRank AI * Pharos iBT * Shenzhen NeoCura Biotechnology

HelixNano Model Medicines * Phenomic AI Shuimu BioSciences

HemoShear Therapeutics, Inc. * Modulus Discovery * Polaris Quantum Biotech Silexon AI Technology

Herophilus, Inc. * Molecule.one PostEra Silicon Therapeutics

HiFiBiO Therapeutics * Molomics * Pragma Biosciences Inc. Sinopia Biosciences *

Hotspot Therapeutics * Nabla Bio Profluent Bio Inc. Soley Therapeutics, Inc. *

Huashen Zhiyao Technology (Beijing) Co., Ltd Nanjing Suikun Intelligent Technology Co., Ltd Protai Bio SOM Innovation Biotech S.L. *

Hummingbird Bioscience NeoCura ProteinQure Spring Discovery

Immunai neoX Biotech * PsychoGenics Standigm

IMMUNITOAI PRIVATE LIMITED Neumora Therapeutics Purposeful StoneWise

Insilico Medicine * Neuron23 * Pythia Labs Strateos

Insitro New Equilibrium Biosciences, Inc. Q-State Biosciences, Inc. * Syntekabio *

InterAx Biotech AG Nimbus Therapeutics Qubit Pharmaceuticals Systems Oncology

Interprotein Nobias Therapeutics, Inc. * Quris Technologies LTD. TandemAI

InveniAI NonExomics RECEPTOR.AI Ten63 Therapeutics, Inc.

InVivo AI Novoheart Recursion Pharmaceuticals *# Terray Therapeutics

Juvena Therapeutics * NuMedii Relation Therapeutics Ltd. * Totient

Keen Eye Technologies OccamzRazor Relay Therapeutics * Totus Medicines *

Kuano Ochre Bio * Resonant Therapeutics * Turbine AI

LabGenius Octant, Inc. * Reverie Labs Turbine Ltd.

Landos Biopharma *# OmniAb Technologies ReviveMed * Valo Health *

Lassogen OncXerna Therapeutics Rezo Therapeutics, Inc. Variational AI

LifeMine Therapeutics, Inc. OneThree Biotech RNAimmune, Inc. * Verge Genomics *

Lodo Therapeutics Optina Diagnostics RubrYc Therapeutics * VERISIM Life

Lunit Ordaos, Inc. Schrödinger * Vesalius Therapeutics Inc.

Matchpoint Therapeutics, Inc OWKIN Scipher Medicine Vevo Therapeutics, Inc.

Meliora Therapeutics, Inc. PACT Pharma, Inc. Seismic Bio WhiteLab Genomics

Menten AI Pepticom Seismic Therapeutic, Inc. X37 *

Metanovas Inc. Peptone SEngine Precision Medicine XtalPi

Metis Pharmaceuticals * PharmCADD Serimmune Inc. ZebiAI Therapeutics *



10.5. Value modelling

In our high-level value model, three different 
discovery scenarios were assessed. All three 
scenarios were within the small molecule discovery 
space. The scenarios were defined starting from 
baseline of typical experimental drug discovery, as it 
is practised today, and adjusting that baseline for 
each phase of the discovery value chain and testing 
potential impact ranges of AI on time & cost.

Figure 21 – Methodology used for value modelling 

This was done in three steps (Figure 21). 

• The original baseline for each phase was 
informed from prior literature and adjusted for 
inflation and advancement. For each phase, the 
baseline was adjusted to reflect the example 
scenarios (assuming no AI use cases are 
deployed). The adjusted baselines were validated 
by experts within the field.

1. Baseline informed by [24], updated to adjust for inflation Note: The impact of AI on PoS is not modeled as this is difficult to quantify given long timelines

Unlocking the potential of AI in Drug Discovery | 67

Cost ($M)
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Adjustment

Time saving

STEP 1
Baseline for small molecule discovery 
process1 was set up and adjusted for 
each scenario for each phase

STEP 2
Cost and time saving assumptions 
were made for the 3 scenarios based on the 
AI use cases and impact was triangulated 
via literature analysis and interviews 

STEP 3
Time and cost impact were calculated 
by multiplying baseline with savings

Target
Identification
and Validation 

Target
to Hit

Hit 
to Lead

Lead 
Optimisation Preclinical

Cost of each phase in Baseline

Time of each phase in Baseline

± adjustment for each scenario

Expected cost impact of AI per phase

Expected time impact of AI per phase

Cost of AI-enabled drug discovery

Time of AI-enabled drug discovery

• The potential time and cost impact of AI for each 
phase and scenario was determined by 
triangulating interviews, publications, and 
emerging proof points [8, 26, 28, 30-38].

• The adjusted baseline was then multiplied with 
potential time and cost impact to find the time 
and cost of AI-enabled drug discovery.



Figure 22 shows how the impact of AI varies for each phase and scenario.

Figure 22 – AI impact on time and cost across the discovery value chain
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Scenario

1
New molecule for 
difficult or poorly 
understood target

2
Molecule from existing 
chemical series for well 
understood target

3
Repurposing of existing 
molecule for target 

AI Impact on Time and Cost 

Target Identification 
and Validation Target to Hit Hit to Lead Lead Optimisation Preclinical

Low AI impact Medium AI impact High AI impact



In Scenario One, AI has the largest impact on the 
time and cost of the following phases:

• Target identification and validation: AI use cases 
such as (-omics) data mining to link target to 
disease and protein structure and dynamics 
modelling can help understand the structure-
function relationship more quickly, resulting in 
quicker and better hypothesis generation. For a 
difficult target, extensive biology and validation 
is required; AI can help prioritise targets 
systematically.

• Target to hit: Large DNA-encoded chemical 
libraries enable large, tailored libraries (which 
include de novo structures) to be generated and 
screened. This enables a larger chemical space 
to be explored at moderate costs and therefore 
increases the chance of discovering targets of 
interest and good hits for a difficult target. 

• Hit to lead and lead optimisation: AI can 
significantly reduce the number of compounds 
and experiments required to find and optimise 
leads in various ways. For example, activity 
prediction enables experiments to be more 
targeted and predictive analytics can help 
forecast compound properties. However, the 
impact is limited by the lack of existing clinical 
data for a new molecule.

In Scenario Two, AI has the largest impact on the 
time and cost of the following phases:

• Hit to lead and lead optimisation: As mentioned 
in Scenario Two, AI use cases reduce the 
number of compounds and experiments 
required to find and optimise leads. Particularly 

for a well-understood target which has a wealth 
of existing data target (e.g., prior chemical & 
assay history) as this significantly reduces the 
number of design-make-test cycles required.

In Scenario Three, AI has the largest impact on the 
time and cost of the following phases:

• Target identification and validation: AI has the 
potential to accelerate the discovery of a novel 
disease-target relationship. For example, 
(-omics) mining and patient data (e.g., from 
historic trials or real-world evidence) can be 
used to draw novel links between diseases.

• Target to hit: AI can speed up the discovery of a 
novel target-molecule relationship using 
knowledge graphs or screening of licensed 
libraries. However, it is worth noting that the AI 
impact on cost is limited as screening of 
licensed libraries often results in additional 
costs.

• Preclinical: AI use cases such as predictive 
analytics on toxicity and PK/PD can enable 
compounds for testing to be prioritised which 
can save both time and costs. For a repurposed 
drug, the large availability of existing data (e.g., 
pharmacological, and functional impact data) 
and models (e.g., target-based toxicity 
prediction models) can be leveraged. 
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10.6. AI-derived clinical assets

The ‘AI-derived assets’ catalogued as part of this 
project are listed in the table below. The list was 
curated by extracting current clinical pipelines of 
‘AI-first’ biotech companies from Citeline’s 
Pharmaprojects, a global drug development 
database. All discontinued programmes and 

programmes regarding cell therapies were excluded 
to form the list. We recognise that pipelines are 
challenging to track and update given dynamic 
changes across clinical and preclinical portfolios. As 
such, we have used an external source from Citeline 
to assess the evolution of pipelines over time, but 

recognise that this source does not have full 
coverage across all ‘AI-first’ biotechs identified. This 
approach is not exhaustive but provides an indication 
of the size and growth of AI-derived portfolios.

Company Generic Drug Name Global Status Modality Therapeutic area

A2A Pharmaceuticals AO-001 Phase II Clinical Trial Small molecule Oncology

AbCellera Biologics bamlanivimab Launched Antibody Covid-19

AbCellera Biologics bebtelovimab Phase II Clinical Trial Antibody Covid-19

Accutar Biotechnology AC-682 Phase I Clinical Trial Small molecule Oncology

Accutar Biotechnology AC-0176 Phase I Clinical Trial Small molecule Oncology

Accutar Biotechnology AC-699 Phase I Clinical Trial Small molecule Oncology

Adagene ADG-106 Phase II Clinical Trial Antibody Oncology

Adagene ADG-104 Phase II Clinical Trial Antibody Oncology

Adagene ADG-116 Phase II Clinical Trial Antibody Oncology

Adagene ADG-126 Phase II Clinical Trial Antibody Oncology

Adagene BC-006 Phase I Clinical Trial Antibody Oncology

Adimab PM-1022 Phase I Clinical Trial Antibody Oncology

AI Therapeutics sirolimus, LAM Therapeutics Phase I Clinical Trial Small molecule Immunology

AI Therapeutics apilimod dimesylate Phase II Clinical Trial Small molecule Covid-19

AI Therapeutics AIT-101 Phase II Clinical Trial Small molecule Neurology

BenevolentAI BEN-2293 Phase II Clinical Trial Small molecule Other

Berg ubidecarenone, BERG Pharma Phase II Clinical Trial Small molecule Oncology

BioAge Labs asapiprant Phase II Clinical Trial Small molecule Covid-19

BioAge Labs BGE-105 Phase I Clinical Trial Small molecule Musculoskeletal
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Company Generic Drug Name Global Status Modality Therapeutic area

BioXcel Therapeutics dexmedetomidine, BioXcel Launched Small molecule Mental health

Black Diamond Therapeutics BDTX-1535 Phase I Clinical Trial Small molecule Oncology

C4X Discovery INDV-2000 Phase I Clinical Trial Small molecule Mental health

Compugen bapotulimab Phase I Clinical Trial Antibody Oncology

Compugen COM-701 Phase II Clinical Trial Antibody Oncology

Compugen COM-902 Phase I Clinical Trial Antibody Oncology

Entos Pharmaceuticals COVID-19 vaccine, Entos Pharmaceuticals Phase II Clinical Trial Vaccine Covid-19

EpiVax influenza vaccine, H7N9, Epivax Phase I Clinical Trial Vaccine Infectious disease

EpiVax influenza vaccine, H7N9, Protein Sciences Phase I Clinical Trial Vaccine Infectious disease

Evaxion Biotech EVAX-01 Phase II Clinical Trial Vaccine Oncology

Evaxion Biotech EVX-02 Phase II Clinical Trial Vaccine Oncology

Exscientia EVOEXS-21546 Phase I Clinical Trial Small molecule Oncology

Exscientia DSP-0038 Phase I Clinical Trial Small molecule Mental health

Gritstone Bio GRANITE-001 Phase III Clinical Trial Vaccine Oncology

Gritstone Bio SLATE-001 Phase II Clinical Trial Vaccine Oncology

Gritstone Bio COVID-19 vaccine, Gritstone Oncology Phase I Clinical Trial Vaccine Covid-19

Gritstone Bio HIV vaccine, Gilead Sciences Phase I Clinical Trial Vaccine Infectious disease

Gritstone Bio SLATE v2 Phase II Clinical Trial Vaccine Oncology

Gritstone Bio COVID-19 vaccine, Gritstone Bio Phase I Clinical Trial Vaccine Covid-19

Gritstone Bio COVID-19 vaccine, Gritstone Bio-1 Phase I Clinical Trial Vaccine Covid-19

Gritstone Bio COVID-19 vaccine, Gritstone Bio-2 Phase I Clinical Trial Vaccine Covid-19

Healx sulindac, Healx Phase II Clinical Trial Small molecule Neurology

HemoShear Therapeutics HST-5040 Phase II Clinical Trial Small molecule Metabolic

HiFiBiO Therapeutics HFB-301001 Phase I Clinical Trial Antibody Oncology

HiFiBiO Therapeutics HFB-200301 Phase I Clinical Trial Antibody Oncology

HiFiBiO Therapeutics HFB-30132A Phase I Clinical Trial Antibody Covid-19

InSilico Medicine INS018-055 Phase I Clinical Trial Small molecule Respiratory

Landos Biopharma omilancor Phase II Clinical Trial Small molecule Metabolic

Landos Biopharma NX-13 Phase I Clinical Trial Small molecule Anti-inflammatory

Landos Biopharma LABP-104 Phase I Clinical Trial Small molecule Immunology



Unlocking the potential of AI in Drug Discovery | 72

Company Generic Drug Name Global Status Modality Therapeutic area

METiS Pharmaceuticals central nervous system disease therapy, 
METiS Pharmaceuticals

Phase I Clinical Trial Small molecule Neurology

Neumora Therapeutics NMRA-140 Phase II Clinical Trial Small molecule Mental health

Neumora Therapeutics NMRA-511 Phase I Clinical Trial Small molecule Neurology

Nimbus Therapeutics firsocostat Phase II Clinical Trial Small molecule Oncology

Nimbus Therapeutics NDI-034858 Phase II Clinical Trial Small molecule Oncology

Nimbus Therapeutics NDI-101150 Phase II Clinical Trial Small molecule Oncology

Nobias Therapeutics fasoracetam, Nobias Therapeutics Phase II Clinical Trial Small molecule Neurology

Pharos iBio PHI-101 Phase I Clinical Trial Small molecule Oncology

Recursion Pharmaceuticals ruboxistaurin mesylate Phase I Clinical Trial Small molecule Neurology

Recursion Pharmaceuticals REC-2282 Phase III Clinical Trial Small molecule Oncology

Recursion Pharmaceuticals REC-4881 Phase II Clinical Trial Small molecule Oncology

Recursion Pharmaceuticals REC-994 Phase II Clinical Trial Small molecule Neurology

Recursion Pharmaceuticals REC-3964 Phase I Clinical Trial Small molecule Infectious disease

Relay Therapeutics RLY-2608 Phase I Clinical Trial Small molecule Oncology

Relay Therapeutics RLY-4008 Phase I Clinical Trial Small molecule Oncology

Schrödinger SGR-1505 Phase I Clinical Trial Small molecule Oncology

SOM Biotech tolcapone, SOM Biotech Phase II Clinical Trial Small molecule Neurology

SOM Biotech bevantolol, SOM Biotech Phase II Clinical Trial Small molecule Neurology

SOM Biotech SOM-1311 Phase I Clinical Trial Small molecule Metabolic

SOM Biotech prexasertib, SOM Biotech Phase I Clinical Trial Small molecule Covid-19

Valo Health SAR-407899 Phase II Clinical Trial Small molecule Analgesic

Valo Health OPL-0301 Phase II Clinical Trial Small molecule Cardiovascular

Verge Genomics VRG-50635 Phase I Clinical Trial Small molecule Covid-19
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