Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Busting the myth of methotrexate chronic hepatotoxicity

Abstract

Methotrexate is a key component of the treatment of inflammatory rheumatic diseases and the mainstay of therapy in rheumatoid arthritis. Hepatotoxicity has long been a concern for prescribers envisaging long-term treatment with methotrexate for their patients. However, the putative liver toxicity of methotrexate should be evaluated in the context of advances in our knowledge of the pathogenesis and natural history of liver disease, especially non-alcoholic fatty liver disease (NAFLD). Notably, patients with NAFLD are at increased risk for methotrexate hepatotoxicity, and methotrexate can worsen the course of NAFLD. Understanding the mechanisms of acute hepatotoxicity can facilitate the interpretation of elevated concentrations of liver enzymes in this context. Liver fibrosis and the mechanisms of fibrogenesis also need to be considered in relation to chronic exposure to methotrexate. A number of non-invasive tests for liver fibrosis are available for use in patients with rheumatic disease, in addition to liver biopsy, which can be appropriate for particular individuals. On the basis of the available evidence, practical suggestions for pretreatment screening and long-term monitoring of methotrexate therapy can be made for patients who have (or are at risk for) chronic liver disease.

Key points

  • Methotrexate is a key component in the treatment of inflammatory rheumatic diseases and the mainstay of therapy in rheumatoid arthritis.

  • In light of current evidence, it seems unlikely that methotrexate alone is capable of inducing chronic liver disease; the risk of methotrexate-induced liver injury is primarily acute in nature.

  • The cumulative dose of methotrexate has no predictive value for the occurrence of fibrosis.

  • In non-alcoholic fatty liver disease, several pathophysiological arguments suggest (in the absence of proof from clinical trials) that long-term methotrexate therapy worsens liver damage and the progression of liver disease.

  • Pretreatment screening is advisable to check for the possible presence of liver disease in patients being considered for methotrexate treatment.

  • Monthly monitoring is advocated at the beginning of methotrexate treatment, followed by 3-monthly monitoring comprising complete blood counts, liver function tests and calculation of the Fib-4 fibrosis score.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of methotrexate-induced acute hepatotoxicity and hypothetical methotrexate-induced fibrogenesis.
Fig. 2: Possible mechanisms involved in the worsening of NAFLD secondary to chronic methotrexate administration.
Fig. 3: Suggested protocol for liver risk assessment and monitoring in relation to methotrexate treatment.

Similar content being viewed by others

References

  1. Smolen, J. S. et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann. Rheum. Dis. 75, 3–15 (2016).

    Article  Google Scholar 

  2. Visser, K. & van der Heijde, D. Optimal dosage and route of administration of methotrexate in rheumatoid arthritis: a systematic review of the literature. Ann. Rheum. Dis. 68, 1094–1099 (2009).

    Article  CAS  Google Scholar 

  3. Friedman, B. & Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine 86, 301–307 (2019).

    Article  CAS  Google Scholar 

  4. Sherbini, A. A., Sharma, S. D., Gwinnutt, J. M., Hyrich, K. L. & Verstappen, S. M. M. Prevalence and predictors of adverse events with methotrexate mono- and combination-therapy for rheumatoid arthritis: a systematic review. Rheumatology 60, 4001–4017 (2021).

    Article  Google Scholar 

  5. Juge, P. A. et al. Methotrexate and rheumatoid arthritis associated interstitial lung disease. Eur. Respir. J. 57, 2000337 (2021).

    Article  CAS  Google Scholar 

  6. Elsawy, H. et al. Naringin alleviates methotrexate-induced liver injury in male albino rats and enhances its antitumor efficacy in HepG2 cells. Biosci. Rep. 40, BSR20193686 (2020).

    Article  CAS  Google Scholar 

  7. Ezhilarasan, D. Hepatotoxic potentials of methotrexate: Understanding the possible toxicological molecular mechanisms. Toxicology 458, 152840 (2021).

    Article  CAS  Google Scholar 

  8. Cure, E. et al. Protective effect of infliximab on methotrexate-induced liver injury in rats: unexpected drug interaction. J. Cancer Res. Ther. 11, 164–169 (2015).

    Article  CAS  Google Scholar 

  9. van Ede, A. E. et al. Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatology 41, 658–665 (2002).

    Article  Google Scholar 

  10. Goudarzi, M., Kalantar, M., Sadeghi, E., Karamallah, M. H. & Kalantar, H. Protective effects of apigenin on altered lipid peroxidation, inflammation, and antioxidant factors in methotrexate-induced hepatotoxicity. Naunyn Schmiedebergs Arch. Pharmacol. 394, 523–531 (2021).

    Article  CAS  Google Scholar 

  11. Ali, N. et al. Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: an experimental approach. Chem. Biol. Interact. 272, 80–91 (2017).

    Article  CAS  Google Scholar 

  12. Abo-Haded, H. M., Elkablawy, M. A., Al-Johani, Z., Al-Ahmadi, O. & El-Agamy, D. S. Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity. PLoS One 12, e0174295 (2017).

    Article  Google Scholar 

  13. Kobayashi, K., Terada, C. & Tsukamoto, I. Methotrexate-induced apoptosis in hepatocytes after partial hepatectomy. Eur. J. Pharmacol. 438, 19–24 (2002).

    Article  CAS  Google Scholar 

  14. Ashok, I. & Sheeladevi, R. Oxidant stress evoked damage in rat hepatocyte leading to triggered nitric oxide synthase (NOS) levels on long term consumption of aspartame. J. Food Drug Anal. 23, 679–691 (2015).

    Article  CAS  Google Scholar 

  15. Al Kury, L. T. et al. Ginkgo biloba extract protects against methotrexate-induced hepatotoxicity: a computational and pharmacological approach. Molecules 25, 2540 (2020).

    Article  CAS  Google Scholar 

  16. Chauhan, P. et al. Protective effects of Glycyrrhiza glabra supplementation against methotrexate-induced hepato-renal damage in rats: an experimental approach. J. Ethnopharmacol. 263, 113209 (2020).

    Article  CAS  Google Scholar 

  17. Yao, P., He, X., Zhang, R., Tong, R. & Xiao, H. The influence of MTHFR genetic polymorphisms on adverse reactions after methotrexate in patients with hematological malignancies: a meta-analysis. Hematology 24, 10–19 (2019).

    Article  CAS  Google Scholar 

  18. Conway, R., Low, C., Coughlan, R. J., O’Donnell, M. J. & Carey, J. J. Risk of liver injury among methotrexate users: a meta-analysis of randomised controlled trials. Semin. Arthritis Rheum. 45, 156–162 (2015).

    Article  CAS  Google Scholar 

  19. Khan, N. et al. Incidence of liver toxicity in inflammatory bowel disease patients treated with methotrexate: a meta-analysis of clinical trials. Inflamm. Bowel Dis. 18, 359–367 (2012).

    Article  Google Scholar 

  20. Solomon, D. H. et al. Adverse effects of low-dose methotrexate: a randomized trial. Ann. Intern. Med. 172, 369–380 (2020).

    Article  Google Scholar 

  21. Sajith, M., Pawar, A., Bafna, V. & Bartakke, S. High-dose methotrexate-induced fulminant hepatic failure and pancytopenia in an acute lymphoblastic leukaemia paediatric patient. Eur. J. Hosp. Pharm. 27, 178–180 (2020).

    Article  Google Scholar 

  22. National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury https://www.ncbi.nlm.nih.gov/books/NBK547852/ (2012).

  23. Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655–1669 (2008).

    Article  CAS  Google Scholar 

  24. Henderson, N. C. & Forbes, S. J. Hepatic fibrogenesis: from within and outwith. Toxicology 254, 130–135 (2008).

    Article  CAS  Google Scholar 

  25. Sherif, I. O. & Al-Shaalan, N. H. Hepatoprotective effect of Ginkgo biloba extract against methotrexate-induced hepatotoxicity via targeting STAT3/miRNA-21 axis. Drug Chem. Toxicol. 45, 1723–1731 (2022).

    Article  CAS  Google Scholar 

  26. Zhao, J., Qi, Y. F. & Yu, Y. R. STAT3: a key regulator in liver fibrosis. Ann. Hepatol. 21, 100224 (2021).

    Article  CAS  Google Scholar 

  27. Ezhilarasan, D. MicroRNA interplay between hepatic stellate cell quiescence and activation. Eur. J. Pharmacol. 885, 173507 (2020).

    Article  CAS  Google Scholar 

  28. Taft, L. I. Methotrexate induced hepatitis in childhood leukemia. Isr. J. Med. Sci. 1, 823–827 (1965).

    CAS  Google Scholar 

  29. Coe, R. O. & Bull, F. E. Cirrhosis associated with methotrexate treatment of psoriasis. JAMA 206, 1515–1520 (1968).

    Article  CAS  Google Scholar 

  30. Themido, R., Loureiro, M., Pecegueiro, M., Brandao, M. & Campos, M. C. Methotrexate hepatotoxicity in psoriatic patients submitted to long-term therapy. Acta Derm. Venereol. 72, 361–364 (1992).

    CAS  Google Scholar 

  31. Zachariae, H., Kragballe, K. & Sogaard, H. Methotrexate induced liver cirrhosis. Studies including serial liver biopsies during continued treatment. Br. J. Dermatol. 102, 407–412 (1980).

    Article  CAS  Google Scholar 

  32. Cheng, H. S. & Rademaker, M. Monitoring methotrexate-induced liver fibrosis in patients with psoriasis: utility of transient elastography. Psoriasis 8, 21–29 (2018).

    Article  CAS  Google Scholar 

  33. Roenigk, H. H. Jr., Auerbach, R., Maibach, H. I. & Weinstein, G. D. Methotrexate in psoriasis: revised guidelines. J. Am. Acad. Dermatol. 19, 145–156 (1988).

    Article  Google Scholar 

  34. Whiting-O’Keefe, Q. E., Fye, K. H. & Sack, K. D. Methotrexate and histologic hepatic abnormalities: a meta-analysis. Am. J. Med. 90, 711–716 (1991).

    Article  Google Scholar 

  35. Kremer, J. M. et al. Methotrexate for rheumatoid arthritis. Suggested guidelines for monitoring liver toxicity. American College of Rheumatology. Arthritis Rheum. 37, 316–328 (1994).

    Article  CAS  Google Scholar 

  36. Rubbia-Brandt, L. et al. Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3. J. Hepatol. 33, 106–115 (2000).

    Article  CAS  Google Scholar 

  37. Lok, A. S. & Gunaratnam, N. T. Diagnosis of hepatitis C. Hepatology 26, 48S–56S (1997).

    Article  CAS  Google Scholar 

  38. Sanyal, A. J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 16, 377–386 (2019).

    Article  Google Scholar 

  39. Langman, G., Hall, P. M. & Todd, G. Role of non-alcoholic steatohepatitis in methotrexate-induced liver injury. J. Gastroenterol. Hepatol. 16, 1395–1401 (2001).

    Article  CAS  Google Scholar 

  40. Klujszo, E. H., Parcheta, P., Witkowska, A. B. & Krecisz, B. Non-alcoholic fatty liver disease in patients with psoriasis: therapeutic implications. Postepy Dermatol. Alergol. 37, 468–474 (2020).

    Article  Google Scholar 

  41. Roberts, K. K. et al. The prevalence of NAFLD and NASH among patients with psoriasis in a tertiary care dermatology and rheumatology clinic. Aliment. Pharmacol. Ther. 41, 293–300 (2015).

    Article  CAS  Google Scholar 

  42. Miele, L. et al. Prevalence, characteristics and severity of non-alcoholic fatty liver disease in patients with chronic plaque psoriasis. J. Hepatol. 51, 778–786 (2009).

    Article  CAS  Google Scholar 

  43. Mori, S. et al. Non-alcoholic steatohepatitis-like pattern in liver biopsy of rheumatoid arthritis patients with persistent transaminitis during low-dose methotrexate treatment. PLoS One 13, e0203084 (2018).

    Article  Google Scholar 

  44. Gelfand, J. M. et al. Risk of liver disease in patients with psoriasis, psoriatic arthritis, and rheumatoid arthritis receiving methotrexate: a population-based study. J. Am. Acad. Dermatol. 84, 1636–1643 (2021).

    Article  CAS  Google Scholar 

  45. Roenigk, H. H. Jr., Bergfeld, W. F., St Jacques, R., Owens, F. J. & Hawk, W. A. Hepatotoxicity of methotrexate in the treatment of psoriasis. Arch. Dermatol. 103, 250–261 (1971).

    Article  Google Scholar 

  46. Te, H. S. et al. Hepatic effects of long-term methotrexate use in the treatment of inflammatory bowel disease. Am. J. Gastroenterol. 95, 3150–3156 (2000).

    Article  CAS  Google Scholar 

  47. Maybury, C. M., Samarasekera, E., Douiri, A., Barker, J. N. & Smith, C. H. Diagnostic accuracy of noninvasive markers of liver fibrosis in patients with psoriasis taking methotrexate: a systematic review and meta-analysis. Br. J. Dermatol. 170, 1237–1247 (2014).

    Article  CAS  Google Scholar 

  48. de Ledinghen, V. et al. Diagnostic and predictive factors of significant liver fibrosis and minimal lesions in patients with persistent unexplained elevated transaminases. A prospective multicenter study. J. Hepatol. 45, 592–599 (2006).

    Article  Google Scholar 

  49. Verma, S., Jensen, D., Hart, J. & Mohanty, S. R. Predictive value of ALT levels for non-alcoholic steatohepatitis (NASH) and advanced fibrosis in non-alcoholic fatty liver disease (NAFLD). Liver Int. 33, 1398–1405 (2013).

    Article  CAS  Google Scholar 

  50. Younossi, Z. M. et al. Clinical assessment for high-risk patients with non-alcoholic fatty liver disease in primary care and diabetology practices. Aliment. Pharmacol. Ther. 52, 513–526 (2020).

    Article  Google Scholar 

  51. Hagstrom, H., Talback, M., Andreasson, A., Walldius, G. & Hammar, N. Repeated FIB-4 measurements can help identify individuals at risk of severe liver disease. J. Hepatol. 73, 1023–1029 (2020).

    Article  Google Scholar 

  52. Castera, L. et al. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 128, 343–350 (2005).

    Article  Google Scholar 

  53. Castera, L. Non-invasive tests for liver fibrosis in NAFLD: creating pathways between primary healthcare and liver clinics. Liver Int. 40, 77–81 (2020).

    Article  Google Scholar 

  54. Crossan, C. et al. Referral pathways for patients with NAFLD based on non-invasive fibrosis tests: diagnostic accuracy and cost analysis. Liver Int. 39, 2052–2060 (2019).

    Article  Google Scholar 

  55. Boursier, J. et al. Non-invasive diagnosis and follow-up of non-alcoholic fatty liver disease. Clin. Res. Hepatol. Gastroenterol. 46, 101769 (2021).

    Article  Google Scholar 

  56. Labadie, J. G. & Jain, M. Noninvasive tests to monitor methotrexate-induced liver injury. Clin. Liver Dis. 13, 67–71 (2019).

    Article  Google Scholar 

  57. Lynch, M. et al. The use of transient elastography and FibroTest for monitoring hepatotoxicity in patients receiving methotrexate for psoriasis. JAMA Dermatol. 150, 856–862 (2014).

    Article  Google Scholar 

  58. Cervoni, J. P. et al. A pragmatic non-invasive assessment of liver fibrosis in patients with psoriasis, rheumatoid arthritis or Crohn’s disease receiving methotrexate therapy. Clin. Res. Hepatol. Gastroenterol. 44S, 100003 (2020).

    Article  Google Scholar 

  59. Laharie, D. et al. Assessment of liver fibrosis with transient elastography and FibroTest in patients treated with methotrexate for chronic inflammatory diseases: a case-control study. J. Hepatol. 53, 1035–1040 (2010).

    Article  CAS  Google Scholar 

  60. Kim, T. Y. et al. Assessment of substantial liver fibrosis by real-time shear wave elastography in methotrexate-treated patients with rheumatoid arthritis. J. Ultrasound Med. 34, 1621–1630 (2015).

    Article  Google Scholar 

  61. Aithal, G. P. et al. Monitoring methotrexate-induced hepatic fibrosis in patients with psoriasis: are serial liver biopsies justified? Aliment. Pharmacol. Ther. 19, 391–399 (2004).

    Article  CAS  Google Scholar 

  62. Laharie, D. et al. Diagnosis of liver fibrosis by transient elastography (FibroScan) and non-invasive methods in Crohn’s disease patients treated with methotrexate. Aliment. Pharmacol. Ther. 23, 1621–1628 (2006).

    Article  CAS  Google Scholar 

  63. Azzam, A., Jiyad, Z. & O’Beirne, J. Is methotrexate hepatotoxicity associated with cumulative dose? A systematic review and meta-analysis. Australas. J. Dermatol. 62, 130–140 (2021).

    Article  Google Scholar 

  64. Cheema, H. I., Haselow, D. & Dranoff, J. A. Review of existing evidence demonstrates that methotrexate does not cause liver fibrosis. J. Investig. Med. 70, 1452–1460 (2022).

    Article  Google Scholar 

  65. Gisondi, P., Fostini, A. C., Fossa, I., Girolomoni, G. & Targher, G. Psoriasis and the metabolic syndrome. Clin. Dermatol. 36, 21–28 (2018).

    Article  Google Scholar 

  66. Gisondi, P. et al. Prevalence of metabolic syndrome in patients with psoriasis: a hospital-based case-control study. Br. J. Dermatol. 157, 68–73 (2007).

    Article  CAS  Google Scholar 

  67. Loganathan, A., Kamalaraj, N., El-Haddad, C. & Pile, K. Systematic review and meta-analysis on prevalence of metabolic syndrome in psoriatic arthritis, rheumatoid arthritis and psoriasis. Int. J. Rheum. Dis. 24, 1112–1120 (2021).

    Article  Google Scholar 

  68. Verhoeven, F., Prati, C., Demougeot, C. & Wendling, D. Cardiovascular risk in psoriatic arthritis, a narrative review. Joint Bone Spine 87, 413–418 (2020).

    Article  CAS  Google Scholar 

  69. da Cunha, V. R. et al. Metabolic syndrome prevalence is increased in rheumatoid arthritis patients and is associated with disease activity. Scand. J. Rheumatol. 41, 186–191 (2012).

    Article  Google Scholar 

  70. Zonana-Nacach, A., Santana-Sahagun, E., Jimenez-Balderas, F. J. & Camargo-Coronel, A. Prevalence and factors associated with metabolic syndrome in patients with rheumatoid arthritis and systemic lupus erythematosus. J. Clin. Rheumatol. 14, 74–77 (2008).

    Article  Google Scholar 

  71. Gremese, E. & Ferraccioli, G. The metabolic syndrome: the crossroads between rheumatoid arthritis and cardiovascular risk. Autoimmun. Rev. 10, 582–589 (2011).

    Article  CAS  Google Scholar 

  72. Meune, C., Touze, E., Trinquart, L. & Allanore, Y. Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of cohort studies. Rheumatology 48, 1309–1313 (2009).

    Article  Google Scholar 

  73. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

    Article  Google Scholar 

  74. Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 65, 1557–1565 (2017).

    Article  CAS  Google Scholar 

  75. Armandi, A. & Bugianesi, E. Natural history of NASH. Liver Int. 41, 78–82 (2021).

    Article  CAS  Google Scholar 

  76. Powell, E. E., Wong, V. W. & Rinella, M. Non-alcoholic fatty liver disease. Lancet 397, 2212–2224 (2021).

    Article  CAS  Google Scholar 

  77. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  Google Scholar 

  78. Estes, C., Razavi, H., Loomba, R., Younossi, Z. & Sanyal, A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67, 123–133 (2018).

    Article  CAS  Google Scholar 

  79. Parlati, L., Regnier, M., Guillou, H. & Postic, C. New targets for NAFLD. JHEP Rep. 3, 100346 (2021).

    Article  Google Scholar 

  80. Parthasarathy, G., Revelo, X. & Malhi, H. Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol. Commun. 4, 478–492 (2020).

    Article  Google Scholar 

  81. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  Google Scholar 

  82. Krawczyk, M., Liebe, R.&Lammert, F. Toward genetic prediction of nonalcoholic fatty liver disease trajectories: PNPLA3 and beyond. Gastroenterology 158, 1865–1880.e1 (2020).

    Article  CAS  Google Scholar 

  83. Massart, J., Begriche, K., Moreau, C. & Fromenty, B. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity. J. Clin. Transl. Res. 3, 212–232 (2017).

    CAS  Google Scholar 

  84. Kang, S. W. et al. AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function. PLoS One 11, e0165638 (2016).

    Article  Google Scholar 

  85. Mansouri, A., Gattolliat, C. H. & Asselah, T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology 155, 629–647 (2018).

    Article  CAS  Google Scholar 

  86. Jaeschke, H., McGill, M. R. & Ramachandran, A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev. 44, 88–106 (2012).

    Article  CAS  Google Scholar 

  87. Pessayre, D. et al. Central role of mitochondria in drug-induced liver injury. Drug Metab. Rev. 44, 34–87 (2012).

    Article  CAS  Google Scholar 

  88. Ye, H., Nelson, L. J., Gomez Del Moral, M., Martinez-Naves, E. & Cubero, F. J. Dissecting the molecular pathophysiology of drug-induced liver injury. World J. Gastroenterol. 24, 1373–1385 (2018).

    Article  CAS  Google Scholar 

  89. Pessayre, D. & Fromenty, B. NASH: a mitochondrial disease. J. Hepatol. 42, 928–940 (2005).

    Article  CAS  Google Scholar 

  90. Chowdhry, S. et al. Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis. Free. Radic. Biol. Med. 48, 357–371 (2010).

    Article  CAS  Google Scholar 

  91. Solano-Urrusquieta, A. et al. NRF-2 and nonalcoholic fatty liver disease. Ann. Hepatol. 19, 458–465 (2020).

    Article  CAS  Google Scholar 

  92. Wright, A. J., Dainty, J. R. & Finglas, P. M. Folic acid metabolism in human subjects revisited: potential implications for proposed mandatory folic acid fortification in the UK. Br. J. Nutr. 98, 667–675 (2007).

    Article  CAS  Google Scholar 

  93. Stover, P. J. & Field, M. S. Trafficking of intracellular folates. Adv. Nutr. 2, 325–331 (2011).

    Article  CAS  Google Scholar 

  94. Au-Yeung, K. K., Yip, J. C., Siow, Y. L. & O, K. Folic acid inhibits homocysteine-induced superoxide anion production and nuclear factor kappa B activation in macrophages. Can. J. Physiol. Pharmacol. 84, 141–147 (2006).

    Article  CAS  Google Scholar 

  95. Sid, V., Siow, Y. L. & O, K. Role of folate in nonalcoholic fatty liver disease. Can. J. Physiol. Pharmacol. 95, 1141–1148 (2017).

    Article  CAS  Google Scholar 

  96. Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013).

    Article  CAS  Google Scholar 

  97. Rossi, M., Amaretti, A. & Raimondi, S. Folate production by probiotic bacteria. Nutrients 3, 118–134 (2011).

    Article  CAS  Google Scholar 

  98. Sid, V., Siow, Y. L., Shang, Y., Woo, C. W. & O, K. High-fat diet consumption reduces hepatic folate transporter expression via nuclear respiratory factor-1. J. Mol. Med. 96, 1203–1213 (2018).

    Article  CAS  Google Scholar 

  99. Koplay, M., Gulcan, E. & Ozkan, F. Association between serum vitamin B12 levels and the degree of steatosis in patients with nonalcoholic fatty liver disease. J. Investig. Med. 59, 1137–1140 (2011).

    Article  CAS  Google Scholar 

  100. da Silva, R. P., Kelly, K. B., Al Rajabi, A. & Jacobs, R. L. Novel insights on interactions between folate and lipid metabolism. Biofactors 40, 277–283 (2014).

    Article  Google Scholar 

  101. Vahedi, H., Bavafaetousi, N., Zolfaghari, P., Yarmohammadi, M. & Bagher Sohrabi, M. Association between serum folate levels and fatty liver disease. Clin. Nutr. Exp. 29, 30–35 (2020).

    Article  Google Scholar 

  102. Christensen, K. E. et al. Steatosis in mice is associated with gender, folate intake, and expression of genes of one-carbon metabolism. J. Nutr. 140, 1736–1741 (2010).

    Article  CAS  Google Scholar 

  103. Champier, J., Claustrat, F., Nazaret, N., Fevre Montange, M. & Claustrat, B. Folate depletion changes gene expression of fatty acid metabolism, DNA synthesis, and circadian cycle in male mice. Nutr. Res. 32, 124–132 (2012).

    Article  CAS  Google Scholar 

  104. Kim, Y. I. et al. Severe folate deficiency causes secondary depletion of choline and phosphocholine in rat liver. J. Nutr. 124, 2197–2203 (1994).

    Article  CAS  Google Scholar 

  105. Bird, J. K. et al. Obesity is associated with increased red blood cell folate despite lower dietary intakes and serum concentrations. J. Nutr. 145, 79–86 (2015).

    Article  CAS  Google Scholar 

  106. Mojtabai, R. Body mass index and serum folate in childbearing age women. Eur. J. Epidemiol. 19, 1029–1036 (2004).

    Article  CAS  Google Scholar 

  107. Hirsch, S. et al. Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver. Nutrition 21, 137–141 (2005).

    Article  CAS  Google Scholar 

  108. Mahamid, M. et al. Folate and B12 levels correlate with histological severity in NASH patients. Nutrients 10, 440 (2018).

    Article  Google Scholar 

  109. Tripathi, M. et al. Vitamin B12 and folate decrease inflammation and fibrosis in NASH by preventing Syntaxin 17 homocysteinylation. J. Hepatol. 77, 1246–1255 (2022).

    Article  CAS  Google Scholar 

  110. Sid, V. et al. Folic acid supplementation during high-fat diet feeding restores AMPK activation via an AMP-LKB1-dependent mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R1215–R1225 (2015).

    Article  CAS  Google Scholar 

  111. Sarna, L. K. et al. Folic acid supplementation attenuates high fat diet induced hepatic oxidative stress via regulation of NADPH oxidase. Can. J. Physiol. Pharmacol. 90, 155–165 (2012).

    Article  CAS  Google Scholar 

  112. Sid, V. et al. Folic acid supplementation attenuates chronic hepatic inflammation in high-fat diet fed mice. Lipids 53, 709–716 (2018).

    Article  CAS  Google Scholar 

  113. Chen, D.-Y. et al. Blood lipid profiles and peripheral blood mononuclear cell cholesterol metabolism gene expression in patients with and without methotrexate treatment. BMC Med. 9, 4 (2011).

    Article  Google Scholar 

  114. Mori, S. et al. Incidence, predictive factors and severity of methotrexate-related liver injury in rheumatoid arthritis: a longitudinal cohort study. Rheumatol. Adv. Pract. 4, rkaa020 (2020).

    Article  Google Scholar 

  115. Shea, B. Folic acid or folinic acid for reducing side effects of methotrexate for people with rheumatoid arthritis. J. Evid. Based Med. 6, 202–203 (2013).

    Article  Google Scholar 

  116. Morgan, S. L. et al. The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 33, 9–18 (1990).

    Article  CAS  Google Scholar 

  117. Shiroky, J. B. et al. Low-dose methotrexate with leucovorin (folinic acid) in the management of rheumatoid arthritis. Results of a multicenter randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 36, 795–803 (1993).

    Article  CAS  Google Scholar 

  118. van Ede, A. E. et al. The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum. 44, 2525–2530 (2001).

    Article  Google Scholar 

  119. Weinblatt, M. E., Maier, A. L. & Coblyn, J. S. Low dose leucovorin does not interfere with the efficacy of methotrexate in rheumatoid arthritis: an 8 week randomized placebo controlled trial. J. Rheumatol. 20, 950–952 (1993).

    CAS  Google Scholar 

  120. Rosenberg, P. et al. Psoriasis patients with diabetes type 2 are at high risk of developing liver fibrosis during methotrexate treatment. J. Hepatol. 46, 1111–1118 (2007).

    Article  CAS  Google Scholar 

  121. Dawwas, M. F. & Aithal, G. P. End-stage methotrexate-related liver disease is rare and associated with features of the metabolic syndrome. Aliment. Pharmacol. Ther. 40, 938–948 (2014).

    Article  CAS  Google Scholar 

  122. Danan, G. Definitions and assessment criteria of acute drug-induced hepatitis. Conclusions of an International Consensus Meeting. Gastroenterol. Clin. Biol. 15, 845–848 (1991).

    CAS  Google Scholar 

  123. Treem, W. R. et al. Consensus guidelines: best practices for detection, assessment and management of suspected acute drug-induced liver injury during clinical trials in adults with chronic viral hepatitis and adults with cirrhosis secondary to hepatitis B, C and nonalcoholic steatohepatitis. Drug Saf. 44, 133–165 (2021).

    Article  Google Scholar 

  124. Pavy, S. et al. Methotrexate therapy for rheumatoid arthritis: clinical practice guidelines based on published evidence and expert opinion. Joint Bone Spine 73, 388–395 (2006).

    Article  CAS  Google Scholar 

  125. Halfon, P. et al. A prospective assessment of the inter-laboratory variability of biochemical markers of fibrosis (FibroTest) and activity (ActiTest) in patients with chronic liver disease. Comp. Hepatol. 1, 3 (2002).

    Article  Google Scholar 

  126. Prati, D. et al. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann. Intern. Med. 137, 1–10 (2002).

    Article  CAS  Google Scholar 

  127. Valenti, L. et al. Definition of healthy ranges for alanine aminotransferase levels: a 2021 update. Hepatol. Commun. 5, 1824–1832 (2021).

    Article  CAS  Google Scholar 

  128. Warren, R. B. et al. British Association of Dermatologists’ guidelines for the safe and effective prescribing of methotrexate for skin disease 2016. Br. J. Dermatol. 175, 23–44 (2016).

    Article  CAS  Google Scholar 

  129. Gyulai, R. et al. Current practice of methotrexate use for psoriasis: results of a worldwide survey among dermatologists. J. Eur. Acad. Dermatol. Venereol. 29, 224–231 (2015).

    Article  CAS  Google Scholar 

  130. Kanwal, F. et al. Clinical care pathway for the risk stratification and management of patients with nonalcoholic fatty liver disease. Gastroenterology 161, 1657–1669 (2021).

    Article  CAS  Google Scholar 

  131. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis — 2021 update. J. Hepatol. 75, 659–689 (2021).

    Article  Google Scholar 

  132. Xiao, G. et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepatology 66, 1486–1501 (2017).

    Article  CAS  Google Scholar 

  133. Mozes, F. E. et al. Diagnostic accuracy of non-invasive tests for advanced fibrosis in patients with NAFLD: an individual patient data meta-analysis. Gut 71, 1006–1019 (2021).

    Article  Google Scholar 

  134. Miyata, M. et al. Validation of the fibrosis-4 (FIB-4) index in the diagnosis of liver disease of rheumatoid arthritis patients treated with methotrexate. Mod. Rheumatol. 29, 936–942 (2019).

    Article  CAS  Google Scholar 

  135. Kim, S. U. et al. Fibrosis-4 index at diagnosis can predict all-cause mortality in patients with rheumatoid arthritis: a retrospective monocentric study. Mod. Rheumatol. 30, 70–77 (2020).

    Article  CAS  Google Scholar 

  136. Avouac, J. et al. Risk of liver fibrosis induced by methotrexate and other rheumatoid arthritis medications according to the Fibrosis-4 index. Clin. Exp. Rheumatol. 40, 150–157 (2021).

    Article  Google Scholar 

  137. Olsson-White, D. A., Olynyk, J. K., Ayonrinde, O. T., Paramalingam, S. & Keen, H. I. Assessment of liver fibrosis markers in people with rheumatoid arthritis on methotrexate. Intern. Med. J. 52, 566–573 (2022).

    Article  CAS  Google Scholar 

  138. Darabian, S. et al. Using fibroscan to assess for the development of liver fibrosis in patients with arthritis on methotrexate: a single-center experience. J. Rheumatol. 49, 558–565 (2022).

    Article  CAS  Google Scholar 

  139. Frankowski, M. et al. Usefulness of noninvasive diagnostic procedures for assessment of methotrexate hepatotoxicity in patients with rheumatoid arthritis. Rheumatol. Int. 42, 631–638 (2022).

    Article  CAS  Google Scholar 

  140. Bafna, P. et al. Prevalence of liver fibrosis by Fibroscan in patients on long-term methotrexate therapy for rheumatoid arthritis. Clin. Rheumatol. 40, 3605–3613 (2021).

    Article  Google Scholar 

  141. Feuchtenberger, M., Kraus, L., Nigg, A., Schulze-Koops, H. & Schafer, A. Methotrexate does not increase the risk of liver fibrosis in patients with rheumatoid arthritis: assessment by ultrasound elastography (ARFI-MetRA study). Rheumatol. Int. 41, 1079–1087 (2021).

    Article  CAS  Google Scholar 

  142. Khandpur, S. et al. Ultrasound liver elastography for the detection of liver fibrosis in patients with psoriasis and reactive arthritis on long-term methotrexate therapy: a cross-sectional study. Indian J. Dermatol. Venereol. Leprol. 86, 508–514 (2020).

    Article  Google Scholar 

  143. Erre, G. L. et al. Methotrexate therapy is not associated with increased liver stiffness and significant liver fibrosis in rheumatoid arthritis patients: a cross-sectional controlled study with real-time two-dimensional shear wave elastography. Eur. J. Intern. Med. 69, 57–63 (2019).

    Article  CAS  Google Scholar 

  144. Lertnawapan, R., Chonprasertsuk, S. & Siramolpiwat, S. Association between cumulative methotrexate dose, non-invasive scoring system and hepatic fibrosis detected by Fibroscan in rheumatoid arthritis patients receiving methotrexate. Int. J. Rheum. Dis. 22, 214–221 (2019).

    Article  CAS  Google Scholar 

  145. Rouhi, A., Hazlewood, G., Shaheen, A. A., Swain, M. G. & Barber, C. E. H. Prevalence and risk factors for liver fibrosis detected by transient elastography or shear wave elastography in inflammatory arthritis: a systematic review. Clin. Exp. Rheumatol. 35, 1029–1036 (2017).

    Google Scholar 

  146. Barbero-Villares, A. et al. Evaluation of liver fibrosis by transient elastography in methotrexate treated patients. Med. Clin. 137, 637–639 (2011).

    Article  Google Scholar 

  147. Park, S. H., Choe, J. Y. & Kim, S. K. Assessment of liver fibrosis by transient elastography in rheumatoid arthritis patients treated with methotrexate. Joint Bone Spine 77, 588–592 (2010).

    Article  CAS  Google Scholar 

  148. Ledingham, J. et al. BSR and BHPR guideline for the prescription and monitoring of non-biologic disease-modifying anti-rheumatic drugs. Rheumatology 56, 865–868 (2017).

    Article  Google Scholar 

  149. Duarte, A. C. et al. Portuguese recommendations for the use of methotrexate in rheumatic diseases - 2016 update. Acta Reumatol. Port. 42, 127–140 (2017).

    Google Scholar 

  150. Singh, J. A. et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 68, 1–26 (2016).

    Article  Google Scholar 

  151. Madsen, O. R. et al. Evidence-based recommendations for treatment with methotrexate in rheumatic disorders. Dan. Med. Bull. 57, A4190 (2010).

    Google Scholar 

  152. Pereira, I. A. et al. National recommendations based on scientific evidence and opinions of experts on the use of methotrexate in rheumatic disorders, especially in rheumatoid arthritis. Results of the 3E initiative from Brazil. Rev. Bras. Reumatol. 49, 346–361 (2009).

    Article  Google Scholar 

  153. Menter, A. et al. Joint American Academy of Dermatology-National Psoriasis Foundation guidelines of care for the management of psoriasis with systemic nonbiologic therapies. J. Am. Acad. Dermatol. 82, 1445–1486 (2020).

    Article  CAS  Google Scholar 

  154. Raaby, L. et al. Methotrexate use and monitoring in patients with psoriasis: a consensus report based on a danish expert meeting. Acta Derm. Venereol. 97, 426–432 (2017).

    Article  CAS  Google Scholar 

  155. Nast, A. et al. European S3–Guidelines on the systemic treatment of psoriasis vulgaris–Update 2015–Short version–EDF in cooperation with EADV and IPC. J. Eur. Acad. Dermatol. Venereol. 29, 2277–2294 (2015).

    Article  CAS  Google Scholar 

  156. Zweegers, J. et al. Summary of the Dutch S3–guidelines on the treatment of psoriasis 2011. Dutch Society of Dermatology and Venereology. Dermatol. Online J. 20, doj_21769 (2014).

    Article  Google Scholar 

  157. Carretero, G. et al. Guidelines on the use of methotrexate in psoriasis. Actas Dermosifiliogr. 101, 600–613 (2010).

    Article  Google Scholar 

  158. Maybury, C. M. et al. Methotrexate and liver fibrosis in people with psoriasis: a systematic review of observational studies. Br. J. Dermatol. 171, 17–29 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Ecarnot (EA3920, University of Franche-Comté and University Hospital Besançon, France) for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

V.D.M., D.W.-V., F.V., F.A., J.A. and T.T. researched data for the article. V.D.M., D.W.-V., F.V., J.A., T.T. and D.W. wrote the article. All authors contributed substantially to the discussion of content and to the review/editing of the manuscript before submission.

Corresponding author

Correspondence to Vincent Di Martino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Devaraj Ezhilarasan, Shunsuke Mori and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Martino, V., Verhoeven, D.W., Verhoeven, F. et al. Busting the myth of methotrexate chronic hepatotoxicity. Nat Rev Rheumatol 19, 96–110 (2023). https://doi.org/10.1038/s41584-022-00883-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00883-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing