Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The matrix in cancer

Abstract

The extracellular matrix is a fundamental, core component of all tissues and organs, and is essential for the existence of multicellular organisms. From the earliest stages of organism development until death, it regulates and fine-tunes every cellular process in the body. In cancer, the extracellular matrix is altered at the biochemical, biomechanical, architectural and topographical levels, and recent years have seen an exponential increase in the study and recognition of the importance of the matrix in solid tumours. Coupled with the advancement of new technologies to study various elements of the matrix and cell–matrix interactions, we are also beginning to see the deployment of matrix-centric, stromal targeting cancer therapies. This Review touches on many of the facets of matrix biology in solid cancers, including breast, pancreatic and lung cancer, with the aim of highlighting some of the emerging interactions of the matrix and influences that the matrix has on tumour onset, progression and metastatic dissemination, before summarizing the ongoing work in the field aimed at developing therapies to co-target the matrix in cancer and cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Matrix changes in cancer.
Fig. 2: Matrix changes modulate intracellular signalling in cancer.

Similar content being viewed by others

References

  1. Yamada, K. M. et al. Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis. Int. J. Exp. Pathol. 100, 144–152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Cox, T. R. & Erler, J. T. Molecular pathways: connecting fibrosis and solid tumor metastasis. Clin. Cancer Res. 20, 3637–3643 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Tian, C. et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc. Natl Acad. Sci. USA 116, 19609–19618 (2019). Study using proteomics on human-in-mouse tumour xenografts to dissect the contribution of tumour versus non-tumour cells to matrix deposition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteomics 11, M111.014647 (2012).

    Article  PubMed  CAS  Google Scholar 

  6. Kadler, K. E., Baldock, C., Bella, J. & Boot-Handford, R. P. Collagens at a glance. J. Cell Sci. 120, 1955–1958 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Ewald, C. Y. The matrisome during aging and longevity: a systems-level approach toward defining matreotypes promoting healthy aging. Gerontology https://doi.org/10.1159/000504295 (2019).

    Article  PubMed  Google Scholar 

  8. Kai, F., Drain, A. P. & Weaver, V. M. The extracellular matrix modulates the metastatic journey. Dev. Cell 49, 332–346 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, a004978 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fang, M., Yuan, J., Peng, C. & Li, Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 35, 2871–2882 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Sottile, J. & Hocking, D. C. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol. Biol. Cell 13, 3546–3559 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Piersma, B., Hayward, M. K. & Weaver, V. M. Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006). Early study showing how precise organization of collagen fibres at the tumour–stroma boundary plays a critical role in local invasion.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Amatangelo, M. D., Bassi, D. E., Klein-Szanto, A. J. P. & Cukierman, E. Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am. J. Pathol. 167, 475–488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amenta, P. S. et al. Type XV collagen in human colonic adenocarcinomas has a different distribution than other basement membrane zone proteins. Hum. Pathol. 31, 359–366 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Amenta, P. S. et al. Loss of types XV and XIX collagen precedes basement membrane invasion in ductal carcinoma of the female breast. J. Pathol. 199, 298–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, J. & Chaudhuri, O. Beyond proteases: basement membrane mechanics and cancer invasion. J. Cell Biol. 218, 2456–2469 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iozzo, R. V. & Schaefer, L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vitale, D. et al. Proteoglycans and glycosaminoglycans as regulators of cancer stem cell function and therapeutic resistance. FEBS J. 286, 2870–2882 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Iozzo, R. V. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Bohaumilitzky, L. et al. A trickster in disguise: hyaluronan’s ambivalent roles in the matrix. Front. Oncol. 7, 242 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Price, Z. K., Lokman, N. A. & Ricciardelli, C. Differing roles of hyaluronan molecular weight on cancer cell behavior and chemotherapy resistance. Cancers 10, 482 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  25. Caon, I. et al. Revisiting the hallmarks of cancer: the role of hyaluronan. Semin. Cancer Biol. 62, 9–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Tavianatou, A. G. et al. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 286, 2883–2908 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Roycik, M. D., Fang, X. & Sang, Q. X. A fresh prospect of extracellular matrix hydrolytic enzymes and their substrates. Curr. Pharm. Des. 15, 1295–1308 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Myllyharju, J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol. 22, 15–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Qi, Y. & Xu, R. Roles of plods in collagen synthesis and cancer progression. Front. Cell Dev. Biol. 6, 66 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Barker, H. E., Cox, T. R. & Erler, J. T. The rationale for targeting the LOX family in cancer. Nat. Rev. Cancer 12, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Yuzhalin, A. E., Lim, S. Y., Kutikhin, A. G. & Gordon-Weeks, A. N. Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim. Biophys. Acta Rev. Cancer 1870, 207–228 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Hammond, E., Khurana, A., Shridhar, V. & Dredge, K. The role of heparanase and sulfatases in the modification of heparan sulfate proteoglycans within the tumor microenvironment and opportunities for novel cancer therapeutics. Front. Oncol. 4, 195 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Coombe, D. R. & Gandhi, N. S. Heparanase: a challenging cancer drug target. Front. Oncol. 9, 1316 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fonović, M. & Turk, B. Cysteine cathepsins and extracellular matrix degradation. Biochim. Biophys. Acta 1840, 2560–2570 (2014).

    Article  PubMed  CAS  Google Scholar 

  35. Kessenbrock, K., Wang, C.-Y. & Werb, Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol. 44–46, 184–190 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Pires, A. et al. Immune remodelling of the extracellular matrix drives loss of cancer stem cells and tumor rejection. Cancer Immunol. Res. https://doi.org/10.1158/2326-6066.CIR-20-0070 (2020). Study on the interplay between the tumour matrix and the immune response, and in particular matrix-remodelling effects on the elimination of cancer stem cells, and propagation of adaptive immunity.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Filipe, E. C., Chitty, J. L. & Cox, T. R. Charting the unexplored extracellular matrix in cancer. Int. J. Exp. Pathol. 99, 58–76 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nam, S., Hu, K. H., Butte, M. J. & Chaudhuri, O. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl Acad. Sci. USA 113, 5492–5497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020). Comprehensive review of the complex mechanical behaviours of tissues and extracellular matrices, and the effects that matrix viscoelasticity has on cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chitty, J. L., Setargew, Y. F. I. & Cox, T. R. Targeting the lysyl oxidases in tumour desmoplasia. Biochem. Soc. Trans. 47, 1661–1678 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. El-Haibi, C. P. et al. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc. Natl Acad. Sci. USA 109, 17460–17465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chu, I. M. et al. GATA3 inhibits lysyl oxidase-mediated metastases of human basal triple-negative breast cancer cells. Oncogene 31, 2017–2027 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Taylor, M. A., Amin, J. D., Kirschmann, D. A. & Schiemann, W. P. Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells. Neoplasia 13, 406–418 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cox, T. R. et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522, 106–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pickup, M. W. et al. Stromally derived lysyl oxidase promotes metastasis of transforming growth factor-β-deficient mouse mammary carcinomas. Cancer Res. 73, 5336–5346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009). Study on how collagen crosslinking by LOX stiffens the extracellular matrix, leading to activation of intracellular signalling that drives cell invasion in premalignant epithelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reynaud, C. et al. Lysyl oxidase is a strong determinant of tumor cell colonization in bone. Cancer Res. 77, 268–278 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Baker, A. M., Bird, D., Lang, G., Cox, T. R. & Erler, J. T. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 32, 1863–1868 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Baker, A.-M. et al. The role of lysyl oxidase in SRC-dependent proliferation and metastasis of colorectal cancer. J. Natl Cancer Inst. 103, 407–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Baker, A.-M. et al. Lysyl oxidase plays a critical role in endothelial cell stimulation to drive tumor angiogenesis. Cancer Res. 73, 583–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Le Calvé, B. et al. Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution. Oncotarget 7, 32100–32112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. DuFort, C. C., DelGiorno, K. E. & Hingorani, S. R. Mounting pressure in the microenvironment: fluids, solids, and cells in pancreatic ductal adenocarcinoma. Gastroenterology 150, 1545–1557.e2 (2016).

    Article  PubMed  Google Scholar 

  54. Scarpellini, A. et al. Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2. J. Biol. Chem. 284, 18411–18423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barsigian, C., Fellin, F. M., Jain, A. & Martinez, J. Dissociation of fibrinogen and fibronectin binding from transglutaminase-mediated cross-linking at the hepatocyte surface. J. Biol. Chem. 263, 14015–14022 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Cardoso, I. et al. Transglutaminase 2 interactions with extracellular matrix proteins as probed with coeliac disease autoantibodies. FEBS J. 282, 2063–2075 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Akimov, S. S., Krylov, D., Fleischman, L. F. & Belkin, A. M. Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J. Cell Biol. 148, 825–838 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shinde, A. et al. Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche. Oncogenesis 9, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rouhiainen, A., Kuja-Panula, J., Tumova, S. & Rauvala, H. RAGE-mediated cell signaling. Methods Mol. Biol. 963, 239–263 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Ahmad, S. et al. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin. Cancer Biol. 49, 44–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Haque, E. et al. Advanced glycation end products (AGEs), protein aggregation and their crosstalk: new insight in tumorigenesis. Glycobiology https://doi.org/10.1093/glycob/cwz073 (2019).

    Article  PubMed  Google Scholar 

  62. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagase, H., Visse, R. & Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69, 562–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shimoda, M., Ohtsuka, T., Okada, Y. & Kanai, Y. Stromal metalloproteinases: Crucial contributors to the tumor microenvironment. Pathol. Int. https://doi.org/10.1111/pin.13033 (2020).

    Article  PubMed  Google Scholar 

  66. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Åström, P. et al. The interplay of matrix metalloproteinase-8, transforming growth factor-β1 and vascular endothelial growth factor-C cooperatively contributes to the aggressiveness of oral tongue squamous cell carcinoma. Br. J. Cancer 117, 1007–1016 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Stadlmann, S. et al. Cytokine-regulated expression of collagenase-2 (MMP-8) is involved in the progression of ovarian cancer. Eur. J. Cancer 39, 2499–2505 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Qin, G. et al. Reciprocal activation between MMP-8 and TGF-β1 stimulates EMT and malignant progression of hepatocellular carcinoma. Cancer Lett. 374, 85–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Raeeszadeh-Sarmazdeh, M., Do, L. D. & Hritz, B. G. Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells 9, 1313 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  71. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rossello, A., Nuti, E., Ferrini, S. & Fabbi, M. Targeting ADAM17 sheddase activity in cancer. Curr. Drug Targets 17, 1908–1927 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Buck, M. R., Karustis, D. G., Day, N. A., Honn, K. V. & Sloane, B. F. Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem. J. 282, 273–278 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ishidoh, K. & Kominami, E. Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro. Biochem. Biophys. Res. Commun. 217, 624–631 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Taleb, S., Cancello, R., Clément, K. & Lacasa, D. Cathepsin s promotes human preadipocyte differentiation: possible involvement of fibronectin degradation. Endocrinology 147, 4950–4959 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Mai, J., Sameni, M., Mikkelsen, T. & Sloane, B. F. Degradation of extracellular matrix protein tenascin-C by cathepsin B: an interaction involved in the progression of gliomas. Biol. Chem. 383, 1407–1413 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Sage, J. et al. Cleavage of nidogen-1 by cathepsin S impairs its binding to basement membrane partners. PLoS ONE 7, e43494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Olson, O. C. & Joyce, J. A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 15, 712–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Vadon-Le Goff, S., Hulmes, D. J. S. & Moali, C. BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling. Matrix Biol. 44–46, 14–23 (2015).

    Article  PubMed  CAS  Google Scholar 

  80. Torres, S. et al. Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin. Cancer Res. 19, 6006–6019 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Wu, X. et al. miR-194 suppresses metastasis of non-small cell lung cancer through regulating expression of BMP1 and p27(kip1). Oncogene 33, 1506–1514 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Stern, R. Hyaluronidases in cancer biology. Semin. Cancer Biol. 18, 275–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, M., Tolg, C. & Turley, E. Dissecting the dual nature of hyaluronan in the tumor microenvironment. Front. Immunol. 10, 947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamaguchi, Y., Yamamoto, H., Tobisawa, Y. & Irie, F. TMEM2: A missing link in hyaluronan catabolism identified? Matrix Biol. 78–79, 139–146 (2019).

    Article  PubMed  CAS  Google Scholar 

  85. Tammi, M. I. et al. Activated hyaluronan metabolism in the tumor matrix - causes and consequences. Matrix Biol. 78–79, 147–164 (2019).

    Article  PubMed  CAS  Google Scholar 

  86. Jacobetz, M. A. et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62, 112–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Bame, K. J. Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology 11, 91R–98R (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Sanderson, R. D., Elkin, M., Rapraeger, A. C., Ilan, N. & Vlodavsky, I. Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS J. 284, 42–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Khanna, M. & Parish, C. R. Heparanase: historical aspects and future perspectives. Adv. Exp. Med. Biol. 1221, 71–96 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Elgundi, Z. et al. Cancer metastasis: the role of the extracellular matrix and the heparan sulfate proteoglycan perlecan. Front. Oncol. 9, 1482 (2019).

    Article  PubMed  Google Scholar 

  91. Vlodavsky, I. et al. Significance of heparanase in cancer and inflammation. Cancer Microenviron. 5, 115–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Masola, V., Bellin, G., Gambaro, G. & Onisto, M. Heparanase: a multitasking protein involved in extracellular matrix (ECM) remodeling and intracellular events. Cells 7, 236 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  93. Vlodavsky, I., Gross-Cohen, M., Weissmann, M., Ilan, N. & Sanderson, R. D. Opposing functions of heparanase-1 and heparanase-2 in cancer progression. Trends Biochem. Sci. 43, 18–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Roy, M. & Marchetti, D. Cell surface heparan sulfate released by heparanase promotes melanoma cell migration and angiogenesis. J. Cell Biochem. 106, 200–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brew, K. & Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim. Biophys. Acta 1803, 55–71 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jackson, H. W., Defamie, V., Waterhouse, P. & Khokha, R. TIMPs: versatile extracellular regulators in cancer. Nat. Rev. Cancer 17, 38–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Dechaphunkul, A. et al. Prognostic significance of tissue inhibitor of metalloproteinase-1 in breast cancer. Int. J. Breast Cancer 2012, 290854 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ring, P., Johansson, K., Höyhtyä, M., Rubin, K. & Lindmark, G. Expression of tissue inhibitor of metalloproteinases TIMP-2 in human colorectal cancer–a predictor of tumour stage. Br. J. Cancer 76, 805–811 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grünwald, B. et al. Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells Via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology 151, 1011–1024.e7 (2016).

    Article  PubMed  CAS  Google Scholar 

  100. Breznik, B., Mitrović, A., T Lah, T. & Kos, J. Cystatins in cancer progression: More than just cathepsin inhibitors. Biochimie 166, 233–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Tian, C. et al. Cancer cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-19-2578 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Becerra, S. P. & Notario, V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat. Rev. Cancer 13, 258–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Ricard-Blum, S. & Vallet, S. D. Proteases decode the extracellular matrix cryptome. Biochimie 122, 300–313 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Lee, J. H. et al. Endostatin: a novel inhibitor of androgen receptor function in prostate cancer. Proc. Natl Acad. Sci. USA 112, 1392–1397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Magnon, C. et al. Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with alphavbeta3 and alphavbeta5 integrins. Cancer Res. 65, 4353–4361 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, S. et al. Endostatin has ATPase activity, which mediates its antiangiogenic and antitumor activities. Mol. Cancer Ther. 14, 1192–1201 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Colorado, P. C. et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res. 60, 2520–2526 (2000).

    CAS  PubMed  Google Scholar 

  110. Maeshima, Y., Colorado, P. C. & Kalluri, R. Two RGD-independent alpha vbeta 3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J. Biol. Chem. 275, 23745–23750 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018). Study that sheds new, unexpected light on the mechanisms involved in neutrophil-mediated tumour promotion through remodelling of the extracellular matrix.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Parker, A. L. & Cox, T. R. The role of the ECM in lung cancer dormancy and outgrowth. Front. Oncol. 10, 1766 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liu, T., Zhou, L., Li, D., Andl, T. & Zhang, Y. Cancer-associated fibroblasts build and secure the tumor microenvironment. Front. Cell Dev. Biol. 7, 60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Foster, D. S., Jones, R. E., Ransom, R. C., Longaker, M. T. & Norton, J. A. The evolving relationship of wound healing and tumor stroma. JCI Insight 3, e99911 (2018).

    Article  PubMed Central  Google Scholar 

  115. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986). Early work discussing the similarities between the extracellular matrix in tumours and wound healing.

    Article  CAS  PubMed  Google Scholar 

  116. Dvorak, H. F. Tumors: wounds that do not heal-a historical perspective with a focus on the fundamental roles of increased vascular permeability and clotting. Semin. Thromb. Hemost. 45, 576–592 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Pereira, B. A. et al. CAF subpopulations: a new reservoir of stromal targets in pancreatic cancer. Trends Cancer 5, 724–741 (2019).

    Article  PubMed  Google Scholar 

  118. Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9, 5150 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Nguyen, E. V. et al. Proteomic profiling of human prostate cancer-associated fibroblasts (CAF) reveals LOXL2-dependent regulation of the tumor microenvironment. Mol. Cell Proteom. 18, 1410–1427 (2019).

    Article  CAS  Google Scholar 

  120. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020). A consensus framework for the identification and study of CAFs and their roles in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. LeBleu, V. S. & Kalluri, R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis. Model. Mech. 11, dmm029447 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Arina, A. et al. Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc. Natl Acad. Sci. USA 113, 7551–7556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016). Comprehensive review of the biology and function of fibroblasts in solid tumours.

    Article  CAS  PubMed  Google Scholar 

  124. Bochet, L. et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Mu, W., Rana, S. & Zöller, M. Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia 15, 875–887 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Webber, J. P. et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34, 290–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. LeBleu, V. S. & Kalluri, R. Exosomes as a multicomponent biomarker platform in cancer. Trends Cancer 6, 767–774 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, L. et al. Stromal myofibroblasts are associated with poor prognosis in solid cancers: a meta-analysis of published studies. PLoS ONE 11, e0159947 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ishimoto, T. et al. Activation of transforming growth factor beta 1 signaling in gastric cancer-associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells. Gastroenterology 153, 191–204.e16 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Vasiukov, G. et al. Myeloid cell-derived TGF-beta signaling regulates ECM deposition in mammary carcinoma via adenosine-dependent mechanisms. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-19-3954 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Biffi, G. et al. IL1-Induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  PubMed  Google Scholar 

  134. Hiebert, P. et al. Nrf2-mediated fibroblast reprogramming drives cellular senescence by targeting the matrisome. Dev. Cell 46, 145–161.e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Le, C. P. et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat. Commun. 7, 10634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nagaraja, A. S. et al. Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight 2, e93076 (2017).

    Article  PubMed Central  Google Scholar 

  137. Insua-Rodríguez, J. et al. Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Mol. Med. 10, e9003 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Coffey, J. C. et al. Excisional surgery for cancer cure: therapy at a cost. Lancet Oncol. 4, 760–768 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Rachman-Tzemah, C. et al. Blocking surgically induced lysyl oxidase activity reduces the risk of lung metastases. Cell Rep. 19, 774–784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Steins, A. et al. High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1. EMBO Rep. 21, e48780 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Özdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Amakye, D., Jagani, Z. & Dorsch, M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat. Med. 19, 1410–1422 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Cox, T. R. & Erler, J. T. Fibrosis and cancer: partners in crime or opposing forces? Trends Cancer 2, 279–282 (2016).

    Article  PubMed  Google Scholar 

  145. Wei, L. et al. Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer. Cell Death Dis. 9, 1065 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Hastings, J. F., Skhinas, J. N., Fey, D., Croucher, D. R. & Cox, T. R. The extracellular matrix as a key regulator of intracellular signalling networks. Br. J. Pharmacol. 176, 82–92 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Ecker, B. L. et al. Age-related changes in HAPLN1 increase lymphatic permeability and affect routes of melanoma metastasis. Cancer Discov. 9, 82–95 (2019). Study highlighting how age-related changes in HAPLN1 in draining lymph nodes affect sites of metastasis in melanoma.

    Article  CAS  PubMed  Google Scholar 

  148. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019). Study investigating how age-related changes in the skin, and in particular HAPLN1, alter response to immunotherapy and metastatic dissemination.

    Article  CAS  PubMed  Google Scholar 

  149. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6364 (2015).

    Article  PubMed  CAS  Google Scholar 

  150. Guo, W. et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Mocanu, M.-M. et al. Associations of ErbB2, beta1-integrin and lipid rafts on Herceptin (Trastuzumab) resistant and sensitive tumor cell lines. Cancer Lett. 227, 201–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Grasset, E. M. et al. Matrix stiffening and EGFR cooperate to promote the collective invasion of cancer cells. Cancer Res. 78, 5229–5242 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Weigelt, B., Lo, A. T., Park, C. C., Gray, J. W. & Bissell, M. J. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res. Treat. 122, 35–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP and TAZ: a signalling hub of the tumour microenvironment. Nat. Rev. Cancer 19, 454–464 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Nguyen, C. D. K. & Yi, C. YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer 5, 283–296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Vennin, C. et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci. Transl. Med. 9, eaai8504 (2017). Study demonstrating how inhibition of ROCK signalling in tumours disrupts matrix remodelling, leading to decreased metastasis and increased response to therapy in pancreatic cancer models.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Rath, N. et al. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Mol. Med. 9, 198–218 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Rath, N. et al. Rho kinase inhibition by AT13148 blocks pancreatic ductal adenocarinoma invasion and tumor growth. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-1339 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ibbetson, S. J., Pyne, N. T., Pollard, A. N., Olson, M. F. & Samuel, M. S. Mechanotransduction pathways promoting tumor progression are activated in invasive human squamous cell carcinoma. Am. J. Pathol. 183, 930–937 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Boyle, S. T. et al. ROCK-mediated selective activation of PERK signalling causes fibroblast reprogramming and tumour progression through a CRELD2-dependent mechanism. Nat. Cell Biol. 22, 882–895 (2020). Study in breast cancer models revealing how cancer cell-driven CAF reprograming leads to the generation of a protumorigenic matrix.

    Article  CAS  PubMed  Google Scholar 

  161. Vennin, C. et al. Reshaping the tumor stroma for treatment of pancreatic cancer. Gastroenterology 154, 820–838 (2018).

    Article  PubMed  Google Scholar 

  162. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Franco-Barraza, J. et al. Matrix-regulated integrin αvβ5 maintains α5β1-dependent desmoplastic traits prognostic of neoplastic recurrence. eLife 6, e20600 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Samaržija, I. et al. Integrin crosstalk contributes to the complexity of signalling and unpredictable cancer cell fates. Cancers 12, 1910 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  166. Madamanchi, A., Zijlstra, A. & Zutter, M. M. Flipping the switch: integrin switching provides metastatic competence. Sci. Signal. 7, pe9 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Young, J. L. et al. Integrin subtypes and nanoscale ligand presentation influence drug sensitivity in cancer cells. Nano Lett. 20, 1183–1191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kuninty, P. R. et al. ITGA5 inhibition in pancreatic stellate cells attenuates desmoplasia and potentiates efficacy of chemotherapy in pancreatic cancer. Sci. Adv. 5, eaax2770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wheelock, M. J., Shintani, Y., Maeda, M., Fukumoto, Y. & Johnson, K. R. Cadherin switching. J. Cell Sci. 121, 727–735 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Janiszewska, M., Primi, M. C. & Izard, T. Cell adhesion in cancer: beyond the migration of single cells. J. Biol. Chem. 295, 2495–2505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zuidema, A., Wang, W. & Sonnenberg, A. Crosstalk between cell adhesion complexes in regulation of mechanotransduction. Bioessays https://doi.org/10.1002/bies.202000119 (2020).

    Article  PubMed  Google Scholar 

  172. Valiathan, R. R., Marco, M., Leitinger, B., Kleer, C. G. & Fridman, R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. 31, 295–321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Takai, K. et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 32, 244–257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gonzalez, M. E. et al. Mesenchymal stem cell-induced ddr2 mediates stromal-breast cancer interactions and metastasis growth. Cell Rep. 18, 1215–1228 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bayer, S. V. et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. eLife 8, e45508 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Tu, M. M. et al. Targeting DDR2 enhances tumor response to anti-PD-1 immunotherapy. Sci. Adv. 5, eaav2437 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chronopoulos, A. et al. Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway. Nat. Mater. 19, 669–678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Miller, A. E., Hu, P. & Barker, T. H. Feeling things out: bidirectional signaling of the cell-ECM interface, implications in the mechanobiology of cell spreading, migration, proliferation, and differentiation. Adv. Healthc. Mater https://doi.org/10.1002/adhm.201901445 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Zanotelli, M. R., Chada, N. C., Johnson, C. A. & Reinhart-King, C. A. The physical microenvironment of tumors: characterization and clinical impact. Biophys. Rev. Lett. https://doi.org/10.1142/S1793048020300029 (2020).

    Article  Google Scholar 

  180. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Smith, L. R., Cho, S. & Discher, D. E. Stem cell differentiation is regulated by extracellular matrix mechanics. Physiology 33, 16–25 (2018).

    Article  PubMed  CAS  Google Scholar 

  182. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017). Comprehensive review of the role cancer stem cells in cancer.

    Article  CAS  PubMed  Google Scholar 

  183. Hoffmann, E. J. & Ponik, S. M. Biomechanical contributions to macrophage activation in the tumor microenvironment. Front. Oncol. 10, 787 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Malandrino, A., Mak, M., Kamm, R. D. & Moeendarbary, E. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extreme Mech. Lett. 21, 25–34 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Gong, Z. et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proc. Natl Acad. Sci. USA 115, E2686–E2695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tschumperlin, D. J. & Lagares, D. Mechano-therapeutics: targeting mechanical signaling in fibrosis and tumor stroma. Pharmacol. Ther. https://doi.org/10.1016/j.pharmthera.2020.107575 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Pratt, S. J. P., Lee, R. M. & Martin, S. S. The mechanical microenvironment in breast cancer. Cancers 12, 1452 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  188. Fox, A. H. & Lamond, A. I. Paraspeckles. Cold Spring Harb. Perspect. Biol. 2, a000687 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Todorovski, V., Fox, A. H. & Choi, Y. S. Matrix stiffness-sensitive long-non coding RNA NEAT1 seeded paraspeckles in cancer cells. Mol. Biol. Cell https://doi.org/10.1091/mbc.E20-02-0097 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Nazemi, M. & Rainero, E. Cross-talk between the tumor microenvironment, extracellular matrix, and cell metabolism in cancer. Front. Oncol. 10, 239 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Papalazarou, V. et al. The creatine-phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nat. Metab. 2, 62–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Romani, P. et al. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat. Cell Biol. 21, 338–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Park, J. S. et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 578, 621–626 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Becker, L. M. et al. Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 31, 107701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bertero, T. et al. Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29, 124–140.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Demircioglu, F. et al. Cancer associated fibroblast FAK regulates malignant cell metabolism. Nat. Commun. 11, 1290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nallanthighal, S. et al. Inhibition of collagen XI alpha 1-induced fatty acid oxidation triggers apoptotic cell death in cisplatin-resistant ovarian cancer. Cell Death Dis. 11, 258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Slaughter, D. P., Southwick, H. W. & Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6, 963–968 (1953).

    Article  CAS  PubMed  Google Scholar 

  199. Ge, L., Meng, W., Zhou, H. & Bhowmick, N. Could stroma contribute to field cancerization? Med. Hypotheses 75, 26–31 (2010).

    Article  PubMed  Google Scholar 

  200. Bissell, M. J. & Hines, W. C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011). Study in pancreatic cancer dissecting how the genotype of cancer cells shapes their secretomes to differentially reprogram local CAF populations, leading to remodelling of the matrix, creating pro-invasive and chemoprotective microenvironments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Panciera, T. et al. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat. Mater. 19, 797–806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med. 22, 497–505 (2016). Study on how the extracellular matrix and in particular tumour fibrosis cooperates with genetic status in pancreatic cancer to drive progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Vennin, C. et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat. Commun. 10, 3637 (2019). Study in pancreatic cancer dissecting how the genotype of cancer cells shapes their secretomes to differentially reprogramme local CAF populations, leading to remodelling of the matrix, creating proinvasive and chemoprotective microenvironments.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Arandkar, S. et al. Altered p53 functionality in cancer-associated fibroblasts contributes to their cancer-supporting features. Proc. Natl Acad. Sci. USA 115, 6410–6415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Cazet, A. S. et al. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat. Commun. 9, 2897 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Barcus, C. E. et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 19, 9 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Welch, D. R. & Hurst, D. R. Defining the hallmarks of metastasis. Cancer Res. 79, 3011–3027 (2019). Review of the emerging concept of the hallmarks of metastasis and the role the extracellular matrix plays in these.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Conklin, M. W. et al. Collagen alignment as a predictor of recurrence after ductal carcinoma in situ. Cancer Epidemiol. Biomarkers Prev. 27, 138–145 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Mayorca-Guiliani, A. E. et al. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat. Med. 23, 890–898 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Feinberg, T. Y. et al. Divergent matrix-remodeling strategies distinguish developmental from neoplastic mammary epithelial cell invasion programs. Dev. Cell 47, 145–160.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gao, H. et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell 166, 47–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Elia, I. et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568, 117–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Micalizzi, D. S., Maheswaran, S. & Haber, D. A. A conduit to metastasis: circulating tumor cell biology. Genes Dev. 31, 1827–1840 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20, 107–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Haemmerle, M. et al. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat. Commun. 8, 310 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Yu, M. et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487, 510–513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017). Comprehensive landmark review of the emerging concept of premetastatic niches and their importance in metastasis and metastatic organotropism.

    Article  CAS  PubMed  Google Scholar 

  218. Gao, Y. et al. Metastasis organotropism: redefining the congenial soil. Dev. Cell 49, 375–391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hebert, J. D. et al. Proteomic profiling of the ECM of xenograft breast cancer metastases in different organs reveals distinct metastatic niches. Cancer Res. 80, 1475–1485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2011).

    Article  PubMed  CAS  Google Scholar 

  221. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. O’Connell, J. T. et al. VEGF-A and tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc. Natl Acad. Sci. USA 108, 16002–16007 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Cox, T. R. et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 73, 1721–1732 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  226. Fanjul-Fernández, M. et al. Matrix metalloproteinase Mmp-1a is dispensable for normal growth and fertility in mice and promotes lung cancer progression by modulating inflammatory responses. J. Biol. Chem. 288, 14647–14656 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Pantel, K., Alix-Panabières, C. & Riethdorf, S. Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  228. Goddard, E. T., Bozic, I., Riddell, S. R. & Ghajar, C. M. Dormant tumour cells, their niches and the influence of immunity. Nat. Cell Biol. 20, 1240–1249 (2018). Review of the role the tumour microenvironment at metastatic sites and the importance this plays in disseminated tumour cell dormancy.

    Article  CAS  PubMed  Google Scholar 

  229. Yeh, A. C. & Ramaswamy, S. Mechanisms of cancer cell dormancy–another hallmark of cancer? Cancer Res. 75, 5014–5022 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Boire, A., Coffelt, S. B., Quezada, S. A., Vander Heiden, M. G. & Weeraratna, A. T. Tumour dormancy and reawakening: opportunities and challenges. Trends Cancer 5, 762–765 (2019).

    Article  PubMed  Google Scholar 

  231. Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Altorki, N. K. et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat. Rev. Cancer 19, 9–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Gay, L. J. & Malanchi, I. The sleeping ugly: tumour microenvironment’s act to make or break the spell of dormancy. Biochim. Biophys. Acta Rev. Cancer 1868, 231–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Carlson, P. et al. Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat. Cell Biol. 21, 238–250 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Montagner, M. et al. Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nat. Cell Biol. 22, 289–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Yang, L. et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583, 133–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Pein, M. et al. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nat. Commun. 11, 1494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Barney, L. E. et al. Tumor cell-organized fibronectin maintenance of a dormant breast cancer population. Sci. Adv. 6, eaaz4157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Shen, Y. et al. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell 37, 800–817.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  241. Principe, D. R. et al. Long-term gemcitabine treatment reshapes the pancreatic tumor microenvironment and sensitizes murine carcinoma to combination immunotherapy. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-19-2959 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Shen, C. J. et al. Ionizing radiation induces tumor cell lysyl oxidase secretion. BMC Cancer 14, 532 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Falou, O. et al. Evaluation of neoadjuvant chemotherapy response in women with locally advanced breast cancer using ultrasound elastography. Transl. Oncol. 6, 17–24 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Farmer, P. et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat. Med. 15, 68–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  245. Erstad, D. J. et al. Fibrotic response to neoadjuvant therapy predicts survival in pancreatic cancer and is measurable with collagen-targeted molecular MRI. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-1359 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Sasson, A. R. et al. Neoadjuvant chemoradiotherapy for adenocarcinoma of the pancreas: analysis of histopathology and outcome. Int. J. Gastrointest. Cancer 34, 121–128 (2003).

    Article  PubMed  Google Scholar 

  247. Chun, Y. S. et al. Significance of pathologic response to preoperative therapy in pancreatic cancer. Ann. Surg. Oncol. 18, 3601–3607 (2011).

    Article  PubMed  Google Scholar 

  248. Nguyen, T. V., Sleiman, M., Moriarty, T., Herrick, W. G. & Peyton, S. R. Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials 35, 5749–5759 (2014).

    Article  CAS  PubMed  Google Scholar 

  249. Yang, X. H. et al. Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists. Cancer Res. 70, 2256–2263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Pupa, S. M. et al. Regulation of breast cancer response to chemotherapy by fibulin-1. Cancer Res. 67, 4271–4277 (2007).

    Article  CAS  PubMed  Google Scholar 

  251. Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P. & De Carvalho, D. D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9, 4692 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Bin Lim, S. et al. Pan-cancer analysis connects tumor matrisome to immune response. NPJ Precis. Oncol. 3, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Erkan, M. et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 6, 1155–1161 (2008).

    Article  PubMed  Google Scholar 

  254. Troup, S. et al. Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin. Cancer Res. 9, 207–214 (2003).

    CAS  PubMed  Google Scholar 

  255. Li, X. et al. Prolonged exposure to extracellular lumican restrains pancreatic adenocarcinoma growth. Oncogene 36, 5432–5438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Pearce, O. M. T. et al. Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov. 8, 304–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Hoshino, A. et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 182, 1044–1061.e18 (2020). Comprehensive study showing that extracellular vesicles from patients can be used as diagnostic and prognostic biomarkers, including the importance of the presence of extracellular matrix molecules within these vesicles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Tomko, L. A. et al. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma. Sci. Rep. 8, 12941 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. McConnell, J. C. et al. Increased peri-ductal collagen micro-organization may contribute to raised mammographic density. Breast Cancer Res. 18, 5 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Northey, J. J. et al. Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. J. Clin. Invest. https://doi.org/10.1172/JCI129249 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Sage, H., Johnson, C. & Bornstein, P. Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J. Biol. Chem. 259, 3993–4007 (1984).

    Article  CAS  PubMed  Google Scholar 

  263. Mason, I. J., Taylor, A., Williams, J. G., Sage, H. & Hogan, B. L. Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell “culture shock” glycoprotein of Mr 43,000. EMBO J. 5, 1465–1472 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Jailkhani, N. et al. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc. Natl Acad. Sci. USA 116, 14181–14190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Xie, Y. J. et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc. Natl Acad. Sci. USA 116, 7624–7631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Costa, A. F., Campos, D., Reis, C. A. & Gomes, C. Targeting glycosylation: a new road for cancer drug discovery. Trends Cancer 6, 757–766 (2020).

    Article  CAS  PubMed  Google Scholar 

  267. Eder, M. et al. Bicyclic peptides as a new modality for imaging and targeting of proteins overexpressed by tumors. Cancer Res. 79, 841–852 (2019).

    Article  CAS  PubMed  Google Scholar 

  268. He, B. et al. Remodeling of metastatic vasculature reduces lung colonization and sensitizes overt metastases to immunotherapy. Cell Rep. 30, 714–724.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  269. Yeow, Y. L. et al. Immune-mediated ECM depletion improves tumour perfusion and payload delivery. EMBO Mol. Med. 11, e10923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ishihara, J. et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci. Transl. Med. 9, eaan0401 (2017).

    Article  PubMed  CAS  Google Scholar 

  271. Momin, N. et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci. Transl. Med. 11, eaaw2614 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Mansurov, A. et al. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat. Biomed. Eng. 4, 531–543 (2020).

    Article  CAS  PubMed  Google Scholar 

  273. Lingasamy, P. et al. Tumor-penetrating peptide for systemic targeting of tenascin-C. Sci. Rep. 10, 5809 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Takai, K., Le, A., Weaver, V. M. & Werb, Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget 7, 82889–82901 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Kozono, S. et al. Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res. 73, 2345–2356 (2013).

    Article  CAS  PubMed  Google Scholar 

  276. Charrier, A. & Brigstock, D. R. Regulation of pancreatic function by connective tissue growth factor (CTGF, CCN2). Cytokine Growth Factor. Rev. 24, 59–68 (2013).

    Article  CAS  PubMed  Google Scholar 

  277. Neesse, A. et al. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc. Natl Acad. Sci. USA 110, 12325–12330 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Froeling, F. E. M. et al. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression. Gastroenterology 141, 1486–97, 1497.e1 (2011).

    Article  CAS  PubMed  Google Scholar 

  279. Carapuça, E. F. et al. Anti-stromal treatment together with chemotherapy targets multiple signalling pathways in pancreatic adenocarcinoma. J. Pathol. 239, 286–296 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Chauhan, V. P. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013).

    Article  PubMed  CAS  Google Scholar 

  281. Murphy, J. E. et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol. 5, 1020–1027 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Ko, A. H. et al. A phase I study of FOLFIRINOX plus IPI-926, a hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas 45, 370–375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Catenacci, D. V. T. et al. Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J. Clin. Oncol. 33, 4284–4292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Awasthi, N. & Schwarz, R. E. Profile of nintedanib in the treatment of solid tumors: the evidence to date. Onco. Targets. Ther. 8, 3691–3701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Cox, T. R., Gartland, A. & Erler, J. T. Lysyl oxidase, a targetable secreted molecule involved in cancer metastasis. Cancer Res. 76, 188–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  287. Miller, B. W. et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol. Med. 7, 1063–1076 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Bramhall, S. R. et al. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J. Clin. Oncol. 19, 3447–3455 (2001).

    Article  CAS  PubMed  Google Scholar 

  289. Bramhall, S. R. et al. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br. J. Cancer 87, 161–167 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Goffin, J. R. et al. Phase I trial of the matrix metalloproteinase inhibitor marimastat combined with carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 11, 3417–3424 (2005).

    Article  CAS  PubMed  Google Scholar 

  291. Moore, M. J. et al. Comparison of gemcitabine versus the matrix metalloproteinase inhibitor BAY 12-9566 in patients with advanced or metastatic adenocarcinoma of the pancreas: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 21, 3296–3302 (2003).

    Article  CAS  PubMed  Google Scholar 

  292. Ji, T. et al. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy. ACS Nano 11, 8668–8678 (2017).

    Article  CAS  PubMed  Google Scholar 

  293. Hingorani, S. R. et al. HALO 202: randomized phase II Study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J. Clin. Oncol. 36, 359–366 (2018).

    Article  CAS  PubMed  Google Scholar 

  294. Ramanathan, R. K. et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J. Clin. Oncol. 37, 1062–1069 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Cortes, E. et al. Tamoxifen mechanically reprograms the tumor microenvironment via HIF-1A and reduces cancer cell survival. EMBO Rep. 20, e46557 (2019).

    Article  PubMed  Google Scholar 

  296. Ley, K., Rivera-Nieves, J., Sandborn, W. J. & Shattil, S. Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat. Rev. Drug Discov. 15, 173–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Lee, B. Y., Timpson, P., Horvath, L. G. & Daly, R. J. FAK signaling in human cancer as a target for therapeutics. Pharmacol. Ther. 146, 132–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  298. Roy-Luzarraga, M. & Hodivala-Dilke, K. Molecular pathways: endothelial cell FAK-A target for cancer treatment. Clin. Cancer Res. 22, 3718–3724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  300. Kim, S.-H., Turnbull, J. & Guimond, S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  301. Fattet, L. et al. Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN Complex. Dev. Cell 54, 302–316.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Bachmann, M., Kukkurainen, S., Hytönen, V. P. & Wehrle-Haller, B. Cell adhesion by integrins. Physiol. Rev. 99, 1655–1699 (2019).

    Article  CAS  PubMed  Google Scholar 

  303. Houghton, A. M. Mechanistic links between COPD and lung cancer. Nat. Rev. Cancer 13, 233–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  304. Michelotti, G. A., Machado, M. V. & Diehl, A. M. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  305. Huo, C. W. et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 17, 79 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Shawky, M. S. et al. Proteoglycans: potential agents in mammographic density and the associated breast cancer risk. J. Mammary Gland Biol. Neoplasia 20, 121–131 (2015).

    Article  PubMed  Google Scholar 

  307. Mereiter, S., Balmaña, M., Campos, D., Gomes, J. & Reis, C. A. Glycosylation in the era of cancer-targeted therapy: where are we heading? Cancer Cell 36, 6–16 (2019).

    Article  CAS  PubMed  Google Scholar 

  308. Yuzhalin, A. E. et al. Colorectal cancer liver metastatic growth depends on PAD4-driven citrullination of the extracellular matrix. Nat. Commun. 9, 4783 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Stefanelli, V. L. et al. Citrullination of fibronectin alters integrin clustering and focal adhesion stability promoting stromal cell invasion. Matrix Biol. 82, 86–104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Hawkins, C. L. & Davies, M. J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 294, 19683–19708 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Saad, F. A., Salih, E. & Glimcher, M. J. Identification of osteopontin phosphorylation sites involved in bone remodeling and inhibition of pathological calcification. J. Cell Biochem. 103, 852–856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Yalak, G., Shiu, J.-Y., Schoen, I., Mitsi, M. & Vogel, V. Phosphorylated fibronectin enhances cell attachment and upregulates mechanical cell functions. PLoS ONE 14, e0218893 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Klement, E. & Medzihradszky, K. F. Extracellular protein phosphorylation, the neglected side of the modification. Mol. Cell Proteom. 16, 1–7 (2017).

    Article  CAS  Google Scholar 

  314. Gilkes, D. M. et al. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res. 73, 3285–3296 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Gilkes, D. M. et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 11, 456–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Li, L., Wang, W., Li, X. & Gao, T. Association of ECRG4 with PLK1, CDK4, PLOD1 and PLOD2 in esophageal squamous cell carcinoma. Am. J. Transl. Res. 9, 3741–3748 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Sada, M. et al. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility. Cancer Lett. 372, 210–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  318. Shen, Q. et al. Barrier to autointegration factor 1, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3, and splicing factor 3b subunit 4 as early-stage cancer decision markers and drivers of hepatocellular carcinoma. Hepatology 67, 1360–1377 (2018).

    Article  CAS  PubMed  Google Scholar 

  319. Nicastri, A. et al. N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue. J. Proteome Res. 13, 4932–4941 (2014).

    Article  CAS  PubMed  Google Scholar 

  320. Ngo, B., Van Riper, J. M., Cantley, L. C. & Yun, J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer 19, 271–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Soares da Costa, D., Reis, R. L. & Pashkuleva, I. Sulfation of glycosaminoglycans and its implications in human health and disorders. Annu. Rev. Biomed. Eng. 19, 1–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  322. Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  323. Shuster, S., Black, M. M. & McVitie, E. The influence of age and sex on skin thickness, skin collagen and density. Br. J. Dermatol. 93, 639–643 (1975).

    Article  CAS  PubMed  Google Scholar 

  324. Watson, R. E. B., Gibbs, N. K., Griffiths, C. E. M. & Sherratt, M. J. Damage to skin extracellular matrix induced by UV exposure. Antioxid. Redox Signal. 21, 1063–1077 (2014).

    Article  CAS  PubMed  Google Scholar 

  325. Newton, V. L. et al. Mass spectrometry-based proteomics reveals the distinct nature of the skin proteomes of photoaged compared to intrinsically aged skin. Int. J. Cosmet. Sci. 41, 118–131 (2019).

    Article  CAS  PubMed  Google Scholar 

  326. Mierke, C. T. Mechanical cues affect migration and invasion of cells from three different directions. Front. Cell Dev. Biol. 8, 583226 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  327. Carey, S. P. et al. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integr. Biol. 8, 821–835 (2016).

    Article  CAS  Google Scholar 

  328. Park, D. et al. Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nat. Mater. 19, 227–238 (2020).

    Article  CAS  PubMed  Google Scholar 

  329. Pakshir, P. et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat. Commun. 10, 1850 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  330. Attieh, Y. et al. Cancer-associated fibroblasts lead tumor invasion through integrin-β3-dependent fibronectin assembly. J. Cell Biol. 216, 3509–3520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19, 224–237 (2017). Study on how cancer cells and CAFs interact with one another and the matrix, and the importance that this plays in modulating local invasion and metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).

    Article  CAS  PubMed  Google Scholar 

  333. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  PubMed  Google Scholar 

  334. Izzi, V., Davis, M. N. & Naba, A. Pan-cancer analysis of the genomic alterations and mutations of the matrisome. Cancers 12, 2046 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  335. Robertson, C. The extracellular matrix in breast cancer predicts prognosis through composition, splicing, and crosslinking. Exp. Cell Res. 343, 73–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  336. Huang, J. et al. Enhanced osteopontin splicing regulated by RUNX2 is HDAC-dependent and induces invasive phenotypes in NSCLC cells. Cancer Cell Int. 19, 306 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Khan, Z. A. et al. EDB fibronectin and angiogenesis – a novel mechanistic pathway. Angiogenesis 8, 183–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  338. Efthymiou, G. et al. Shaping up the tumor microenvironment with cellular fibronectin. Front. Oncol. 10, 641 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  339. Naba, A. et al. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 49, 10–24 (2016). Comprehensive review of many of the approaches, tools and resources being used to study the extracellular matrix in health and disease.

    Article  CAS  PubMed  Google Scholar 

  340. Shao, X., Taha, I. N., Clauser, K. R., Gao, Y. T. & Naba, A. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res. 48, D1136–D1144 (2020).

    Article  CAS  PubMed  Google Scholar 

  341. Clerc, O. et al. MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Res. 47, D376–D381 (2019).

    Article  CAS  PubMed  Google Scholar 

  342. Angel, P. M. et al. Extracellular matrix imaging of breast tissue pathologies by MALDI imaging mass spectrometry. Proteomics Clin. Appl. https://doi.org/10.1002/prca.201700152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  343. Briggs, M. T. et al. MALDI mass spectrometry imaging of early- and late-stage serous ovarian cancer tissue reveals stage-specific N-glycans. Proteomics https://doi.org/10.1002/pmic.201800482 (2019).

    Article  PubMed  Google Scholar 

  344. Phillips, L., Gill, A. J. & Baxter, R. C. Novel prognostic markers in triple-negative breast cancer discovered by MALDI-mass spectrometry imaging. Front. Oncol. 9, 379 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  345. Gessel, M., Spraggins, J. M., Voziyan, P., Hudson, B. G. & Caprioli, R. M. Decellularization of intact tissue enables MALDI imaging mass spectrometry analysis of the extracellular matrix. J. Mass. Spectrom. 50, 1288–1293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Cornett, D. S., Frappier, S. L. & Caprioli, R. M. MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal. Chem. 80, 5648–5653 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Mayorca-Guiliani, A. E. et al. Decellularization and antibody staining of mouse tissues to map native extracellular matrix structures in 3D. Nat. Protoc. 14, 3395–3425 (2019).

    Article  CAS  PubMed  Google Scholar 

  348. Hwang, J. et al. In situ imaging of tissue remodeling with collagen hybridizing peptides. ACS Nano 11, 9825–9835 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Bennink, L. L. et al. Visualizing collagen proteolysis by peptide hybridization: from 3D cell culture to in vivo imaging. Biomaterials 183, 67–76 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author apologizes to all colleagues whose work could not be discussed due to space limitations. T.R.C. is supported by the Australian National Health and Medical Research Council, Cancer Council NSW, Cancer Institute NSW, Love Your Sister in association with the Australian National Breast Cancer Foundation, Avner Pancreatic Cancer Foundation and Susan G. Komen.

Author information

Authors and Affiliations

Authors

Contributions

The author handled all aspects of the article.

Corresponding author

Correspondence to Thomas R. Cox.

Ethics declarations

Competing interests

T.R.C. is engaged in a non-commercial collaborative project with Pharmaxis Ltd, a pharmaceutical company with ownership of a small-molecule lysyl oxidase family-targeting pipeline.

Additional information

Peer review information

Nature Reviews Cancer thanks E. Cukierman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Australian Pancreatic Cancer Matrix Atlas: https://www.pancreaticcancer.net.au/apma/

MatrisomeDB: http://matrisomedb.pepchem.org/

Matrisome Project and Extracellular Matrix Atlas: http://matrisomeproject.mit.edu

MatrixDB: http://matrixdb.univ-lyon1.fr/

Glossary

Supramolecular

An entity consisting of a complex organization of more than one building block.

Dynamic reciprocity

The ongoing and bidirectional interaction between cells and their microenvironment, and in particular the extracellular matrix.

Desmoplasia

The dense fibrotic tissue that forms in response to insult to a tissue. It is typically observed in and around solid tumours characterized by the excessive or abnormal deposition of extracellular matrix.

Matrisome

All of the extracellular matrix proteins that can potentially be expressed by the genome of a specific organism.

Basement membranes

Structures visible by light microscopy and, in addition to the basal lamina, that consist of layers that are typically secreted by cells from underlying connective tissue. Many basement membranes are rich in fibronectin.

Basal lamina

A molecularly defined part of the basement membrane comprising an electron-dense layer, ~20–100 nm thick, that consists of collagen IV and laminin, only visible by electron microscopy. It is made and maintained by the cells that sit on it, acting as the critical point of attachment.

Matreotype

The specific, acute state of matrix composition (and/or modification) at a given point, associated with, or causal for, a given physiological condition or phenotype.

Glycosaminoglycan

Also known as mucopolysaccharides, glycosaminoglycans are the most abundant heteropolysaccharide in the body. They are complex linear polysaccharides consisting of repeated alternating units of uronic acid and glycosamines.

Matricryptins

Also known as matrikines or cryptikines, these are biologically active fragments of matrix molecules that have undergone limited enzymatic cleavage and have a biological activity different from that of the parent protein.

Metzincin superfamily

The main endopeptidases responsible for matrix degradation, comprising matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase proteins (ADAMs) and ADAMs with thrombospondin motifs (ADAMTSs).

Schiff base adduct

A subclass of imines with the general structure R2C=NR′.

Amadori rearrangement

Important in carbohydrate biology, this rearrangement is the isomerization event whereby the N-glycoside of an aldose sugar is converted to the corresponding ketone by acid or base catalysis.

Mechanotransduction

A form of sensory transduction in which cells convert mechanical stimuli into biological signals and vice versa.

Endopeptidases

Peptidases that cleave peptide bonds of non-terminal amino acids within polypeptide chains and proteins (exopeptidases cleave only the terminal peptide bond of polypeptide chains and proteins).

Anisotropy

The property of being directionally dependent, whereby a particular characteristic (such as physical or mechanical properties) varies depending on the direction of measurement.

Vascular co-option

The process by which tumours hijack the vasculature of existing tissues of organs to obtain a blood supply independently of angiogenesis.

Exosomes

Extracellular vesicles, typically 30–150 nm in diameter, that are secreted by all cells, including cancer cells, and contain biological molecules, including DNA, RNA and proteins.

Viscoelasticity

A time-dependent response to loading or deformation.

Field cancerization

The process by which areas of tissue exhibit intracellular or extracellular procarcinogenic changes that lead to areas of premalignant cells or protumorigenic matrix, respectively.

Premetastatic niches

Specific microenvironments that are systemically induced within a secondary organ and thought to be important for overt colonization by metastasizing primary tumour cells.

Neutrophil extracellular traps

(NETs). Complex networks of extracellular fibres that are primarily composed of chromosomal DNA and histones, and have important roles in thrombosis, inflammation and cancer.

Neoadjuvant

Used to describe interventions given before a main treatment, or in the case of solid tumours, before surgery.

Elastography

A non-invasive medical imaging modality that maps the elastic properties and stiffness of tissues, and is predominantly used to characterize the biomechanical properties of soft tissues.

Vascular patency

The degree to which blood vessels of the vasculature are open and not blocked or obstructed.

Basket trials

Clinical trials in which many tumour types carrying the same molecular or genetic aberration are grouped together and given the same treatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, T.R. The matrix in cancer. Nat Rev Cancer 21, 217–238 (2021). https://doi.org/10.1038/s41568-020-00329-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-020-00329-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer