Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Diabetes insipidus

Abstract

Diabetes insipidus (DI) is a disorder characterized by excretion of large amounts of hypotonic urine. Central DI results from a deficiency of the hormone arginine vasopressin (AVP) in the pituitary gland or the hypothalamus, whereas nephrogenic DI results from resistance to AVP in the kidneys. Central and nephrogenic DI are usually acquired, but genetic causes must be evaluated, especially if symptoms occur in early childhood. Central or nephrogenic DI must be differentiated from primary polydipsia, which involves excessive intake of large amounts of water despite normal AVP secretion and action. Primary polydipsia is most common in psychiatric patients and health enthusiasts but the polydipsia in a small subgroup of patients seems to be due to an abnormally low thirst threshold, a condition termed dipsogenic DI. Distinguishing between the different types of DI can be challenging and is done either by a water deprivation test or by hypertonic saline stimulation together with copeptin (or AVP) measurement. Furthermore, a detailed medical history, physical examination and imaging studies are needed to ensure an accurate DI diagnosis. Treatment of DI or primary polydipsia depends on the underlying aetiology and differs in central DI, nephrogenic DI and primary polydipsia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of DI.
Fig. 2: Pathogenetic mechanisms in acquired central DI.
Fig. 3: Pathogenetic mechanisms in nephrogenic DI.
Fig. 4: Models of pathogenesis in primary polydipsia in schizophrenia and gestational DI.
Fig. 5: Modified algorithm for differential diagnosis of polyuria–polydipsia syndrome.

Similar content being viewed by others

References

  1. Robertson, G. L. Diabetes insipidus. Endocrinol. Metab. Clin. North Am. 24, 549–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Babey, M., Kopp, P. & Robertson, G. L. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat. Rev. Endocrinol. 7, 701–714 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Bockenhauer, D. & Bichet, D. G. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat. Rev. Nephrol. 11, 576–588 (2015). This article is a detailed review of nephrogenic DI, including the importance of early genetic testing and clinical management.

    Article  CAS  PubMed  Google Scholar 

  4. Fenske, W. & Allolio, B. Clinical review: current state and future perspectives in the diagnosis of diabetes insipidus: a clinical review. J. Clin. Endocrinol. Metab. 97, 3426–3437 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Carter, A. C. & Robbins, J. The use of hypertonic saline infusions in the differential diagnosis of diabetes insipidus and psychogenic polydipsia. J. Clin. Endocrinol. Metab. 7, 753–766 (1947).

    Article  CAS  PubMed  Google Scholar 

  6. Fenske, W. et al. Copeptin in the differential diagnosis of the polydipsia-polyuria syndrome — revisiting the direct and indirect water deprivation tests. J. Clin. Endocrinol. Metab. 96, 1506–1515 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Di Iorgi, N. et al. Diabetes insipidus — diagnosis and management. Horm. Res. Paediatr. 77, 69–84 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. Saifan, C. et al. Diabetes insipidus: a challenging diagnosis with new drug therapies. ISRN Nephrol. 2013, 797620 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Maghnie, M. et al. Central diabetes insipidus in children and young adults. N. Engl. J. Med. 343, 998–1007 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Arthus, M. F. et al. Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 11, 1044–1054 (2000).

    CAS  PubMed  Google Scholar 

  11. Mercier-Guidez, E. & Loas, G. Polydipsia and water intoxication in 353 psychiatric inpatients: an epidemiological and psychopathological study. Eur. Psychiatry 15, 306–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Vieweg, W. V. Treatment strategies in the polydipsia-hyponatremia syndrome. J. Clin. Psychiatry 55, 154–160 (1994).

    CAS  PubMed  Google Scholar 

  13. Sailer, C. O. et al. Characteristics and outcomes of patients with profound hyponatraemia due to primary polydipsia. Clin. Endocrinol. 87, 492–499 (2017).

    Article  CAS  Google Scholar 

  14. Benton, D. et al. Executive summary and conclusions from the European Hydration Institute Expert Conference on human hydration, health, and performance. Nutr. Rev. 73 (Suppl. 2), 148–150 (2015).

    Article  PubMed  Google Scholar 

  15. Ananthakrishnan, S. Diabetes insipidus during pregnancy. Best Pract. Res. Clin. Endocrinol. Metab. 30, 305–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Durr, J. A. & Lindheimer, M. D. Diagnosis and management of diabetes insipidus during pregnancy. Endocr. Pract. 2, 353–361 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Clark, A. J. et al. Treatment-related morbidity and the management of pediatric craniopharyngioma: a systematic review. J. Neurosurg. Pediatr. 10, 293–301 (2012).

    Article  PubMed  Google Scholar 

  18. Schreckinger, M. et al. Post-operative diabetes insipidus after endoscopic transsphenoidal surgery. Pituitary 16, 445–451 (2013).

    Article  PubMed  Google Scholar 

  19. Laws, E. R. Jr et al. A benchmark for preservation of normal pituitary function after endoscopic transsphenoidal surgery for pituitary macroadenomas. World Neurosurg. 91, 371–375 (2016).

    Article  PubMed  Google Scholar 

  20. Imura, H. et al. Lymphocytic infundibuloneurohypophysitis as a cause of central diabetes insipidus. N. Engl. J. Med. 329, 683–689 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Masaki, Y. et al. Proposal for a new clinical entity, IgG4-positive multiorgan lymphoproliferative syndrome: analysis of 64 cases of IgG4-related disorders. Ann. Rheum. Dis. 68, 1310–1315 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Iwama, S. et al. Rabphilin-3A as a targeted autoantigen in lymphocytic infundibulo-neurohypophysitis. J. Clin. Endocrinol. Metab. 100, E946–E954 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yasuda, Y. et al. Critical role of rabphilin-3A in the pathophysiology of experimental lymphocytic neurohypophysitis. J. Pathol. 244, 469–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Ohlund, L. et al. Reasons for lithium discontinuation in men and women with bipolar disorder: a retrospective cohort study. BMC Psychiatry 18, 37 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Millson, R. C., Koczapski, A. B., Cook, M. I. & Daszkiewicz, M. A survey of patient attitudes toward self-induced water intoxication. Can. J. Psychiatry 37, 46–47 (1992). This article reports the reasons that patients with schizophrenia and PIP provide for their excess water intake.

    Article  CAS  PubMed  Google Scholar 

  26. May, D. L. Patient perceptions of self-induced water intoxication. Arch. Psychiatr. Nurs. 9, 295–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. de Leon, J., Tracy, J., McCann, E. & McGrory, A. Polydipsia and schizophrenia in a psychiatric hospital: a replication study. Schizophr. Res. 57, 293–301 (2002).

    Article  PubMed  Google Scholar 

  28. Ahmed, A. G., Heigh, L. M. & Ramachandran, K. V. Polydipsia, psychosis, and familial psychopathology. Can. J. Psychiatry 46, 522–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Shutty, M. S. Jr., McCulley, K. & Pigott, B. Association between stereotypic behavior and polydipsia in chronic schizophrenic patients. J. Behav. Ther. Exp. Psychiatry 26, 339–343 (1995).

    Article  PubMed  Google Scholar 

  30. Atsariyasing, W. & Goldman, M. B. A systematic review of the ability of urine concentration to distinguish antipsychotic- from psychosis-induced hyponatremia. Psychiatry Res. 217, 129–133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barlow, E. D. & De Wardener, H. E. Compulsive water drinking. Q. J. Med. 28, 235–258 (1959).

    CAS  PubMed  Google Scholar 

  32. McKenna, K. & Thompson, C. Osmoregulation in clinical disorders of thirst appreciation. Clin. Endocrinol. 49, 139–152 (1998). This review summarizes the osmoregulatory disruption in desire for water and AVP secretion in individuals with primary polydipsia.

    CAS  Google Scholar 

  33. Sailer, C., Winzeler, B. & Christ-Crain, M. Primary polydipsia in the medical and psychiatric patient: characteristics, complications and therapy. Swiss Med. Wkly 147, w14514 (2017).

    PubMed  Google Scholar 

  34. Robertson, G. L. Dipsogenic diabetes insipidus: a newly recognized syndrome caused by a selective defect in the osmoregulation of thirst. Trans. Assoc. Am. Physicians 100, 241–249 (1987).

    CAS  PubMed  Google Scholar 

  35. Robertson, G. L. Diabetes insipidus: differential diagnosis and management. Best Pract. Res. Clin. Endocrinol. Metab. 30, 205–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Davison, J. M., Sheills, E. A., Philips, P. R., Barron, W. M. & Lindheimer, M. D. Metabolic clearance of vasopressin and an analogue resistant to vasopressinase in human pregnancy. Am. J. Physiol. 264, F348–F353 (1993).

    CAS  PubMed  Google Scholar 

  37. Kennedy, S., Hall, P. M., Seymour, A. E. & Hague, W. M. Transient diabetes insipidus and acute fatty liver of pregnancy. Br. J. Obstet. Gynaecol. 101, 387–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Aulinas, A. et al. Low plasma oxytocin levels and increased psychopathology in hypopituitary men with diabetes insipidus. J. Clin. Endocrinol. Metab. 104, 3181–3191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heinbecker, P. & White, H. Hypothalamico-hypophyseal system and its relation to water balance in the dog. Am. J. Physiol. 133, 582–593 (1941).

    Article  CAS  Google Scholar 

  40. Maccubbin, D. A. & Vanburen, J. M. A quantitative evaluation of hypothalamic degeneration and its relation to diabetes insipidus following interruption of the human hypophyseal stalk. Brain 86, 443–464 (1963).

    Article  CAS  PubMed  Google Scholar 

  41. Lipsett, M. B., Maclean, J. P., West, C. D., Li, M. C. & Pearson, O. H. An analysis of the polyuria induced by hypophysectomy in man. J. Clin. Endocrinol. Metab. 16, 183–195 (1956).

    Article  CAS  PubMed  Google Scholar 

  42. Hollinshead, W. H. The interphase of diabetes insipidus. Mayo Clin. Proc. 39, 92–100 (1964).

    CAS  PubMed  Google Scholar 

  43. Verbalis, J. G., Robbins, A. G. & Moses, A. M. in Diabetes Insipidus in Man (eds Czernichow, P. & Robinson, A. G.) 247–265 (Karger, Basel, 1984).

  44. Di Iorgi, N. et al. Central diabetes insipidus in children and young adults: etiological diagnosis and long-term outcome of idiopathic cases. J. Clin. Endocrinol. Metab. 99, 1264–1272 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Kojima, H. et al. Diabetes insipidus caused by lymphocytic infundibuloneurohypophysitis. Arch. Pathol. Lab Med. 113, 1399–1401 (1989).

    CAS  PubMed  Google Scholar 

  46. Maghnie, M. et al. Idiopathic central diabetes insipidus in children and young adults is commonly associated with vasopressin-cell antibodies and markers of autoimmunity. Clin. Endocrinol. 65, 470–478 (2006).

    Article  CAS  Google Scholar 

  47. Shimatsu, A., Oki, Y., Fujisawa, I. & Sano, T. Pituitary and stalk lesions (infundibulo-hypophysitis) associated with immunoglobulin G4-related systemic disease: an emerging clinical entity. Endocr. J. 56, 1033–1041 (2009).

    Article  PubMed  Google Scholar 

  48. Buggy, J. & Jonhson, A. K. Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. Am. J. Physiol. 233, R44–R52 (1977).

    CAS  PubMed  Google Scholar 

  49. Thrasher, T. N., Keil, L. C. & Ramsay, D. J. Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog. Endocrinology 110, 1837–1839 (1982).

    Article  CAS  PubMed  Google Scholar 

  50. Matsuda, T. et al. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat. Neurosci. 20, 230–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Crowley, R. K., Sherlock, M., Agha, A., Smith, D. & Thompson, C. J. Clinical insights into adipsic diabetes insipidus: a large case series. Clin. Endocrinol. 66, 475–482 (2007).

    CAS  Google Scholar 

  52. Hiyama, T. Y. et al. Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ. Brain Pathol. 27, 323–331 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Christensen, J. H. & Rittig, S. in Genetic Diagnosis of Endocrine Disorders 2nd edn (eds Weiss, R. E. & Refetoff, S.) 93–101 (Elsevier, 2016). This book chapter is a comprehensive in-depth review of the genetic background of hereditary central DI.

  54. Pepin, L. et al. A new case of PCSK1 pathogenic variant with congenital proprotein convertase 1/3 deficiency and literature review. J. Clin. Endocrinol. Metab. 104, 985–993 (2019).

    Article  PubMed  Google Scholar 

  55. Shi, G. et al. ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. J. Clin. Invest. 127, 3897–3912 (2017). This study highlights a pathway linking ERAD to conformational maturation of AVP prohormone in neuroendocrine cells, indicating the potential significance of this pathway in the pathogenesis of autosomal dominant central DI.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bichet, D. G. & Lussier, Y. Mice deficient for ERAD machinery component Sel1L develop central diabetes insipidus. J. Clin. Invest. 127, 3591–3593 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Habiby, R. et al. A novel X-linked form of familial neurohypophyseal diabetes insipidus [abstract]. J. Invest. Med. 44, 388A (1996).

    Google Scholar 

  58. Rutishauser, J., Kopp, P., Gaskill, M. B., Kotlar, T. J. & Robertson, G. L. Clinical and molecular analysis of three families with autosomal dominant neurohypophyseal diabetes insipidus associated with a novel and recurrent mutations in the vasopressin-neurophysin II gene. Eur. J. Endocrinol. 146, 649–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Perrotta, S. et al. Early-onset central diabetes insipidus is associated with de novo arginine vasopressin-neurophysin II or Wolfram syndrome 1 gene mutations. Eur. J. Endocrinol. 172, 461–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Nielsen, S. et al. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc. Natl Acad. Sci. USA 92, 1013–1017 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rieg, T. et al. Adenylate cyclase 6 determines cAMP formation and aquaporin-2 phosphorylation and trafficking in inner medulla. J. Am. Soc. Nephrol. 21, 2059–2068 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moeller, H. B., Praetorius, J., Rutzler, M. R. & Fenton, R. A. Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc. Natl Acad. Sci. USA 107, 424–429 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Fushimi, K., Sasaki, S. & Marumo, F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J. Biol. Chem. 272, 14800–14804 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Boton, R., Gaviria, M. & Batlle, D. C. Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am. J. Kidney Dis. 10, 329–345 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Marples, D., Christensen, S., Christensen, E. I., Ottosen, P. D. & Nielsen, S. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J. Clin. Invest. 95, 1838–1845 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Christensen, B. M. et al. Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am. J. Physiol. Cell Physiol. 286, C952–C964 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Christensen, B. M. et al. αENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 22, 253–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grunfeld, J. P. & Rossier, B. C. Lithium nephrotoxicity revisited. Nat. Rev. Nephrol. 5, 270–276 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Rao, R. Glycogen synthase kinase-3 regulation of urinary concentrating ability. Curr. Opin. Nephrol. Hypertens. 21, 541–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Quiroz, J. A., Gould, T. D. & Manji, H. K. Molecular effects of lithium. Mol. Interv. 4, 259–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Rao, R. et al. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am. J. Physiol. Renal Physiol. 288, F642–F649 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Frokiaer, J. et al. Downregulation of aquaporin-2 parallels changes in renal water excretion in unilateral ureteral obstruction. Am. J. Physiol. 273, F213–F223 (1997).

    CAS  PubMed  Google Scholar 

  73. Khositseth, S. et al. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus. Sci. Rep. 5, 18311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Khositseth, S. et al. Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus. Kidney Int. 91, 1070–1087 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. van den Ouweland, A. M. et al. Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. Nat. Genet. 2, 99–102 (1992).

    Article  PubMed  Google Scholar 

  76. Rosenthal, W. et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359, 233–235 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Noda, Y., Sohara, E., Ohta, E. & Sasaki, S. Aquaporins in kidney pathophysiology. Nat. Rev. Nephrol. 6, 168–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Deen, P. M. et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264, 92–95 (1994). This paper reports the discovery that loss of function mutations in AQP2 cause nephrogenic DI.

    Article  CAS  PubMed  Google Scholar 

  79. Mulders, S. M. et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J. Clin. Invest. 102, 57–66 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thompson, C. J., Edwards, C. R. & Baylis, P. H. Osmotic and non-osmotic regulation of thirst and vasopressin secretion in patients with compulsive water drinking. Clin. Endocrinol. 35, 221–228 (1991).

    Article  CAS  Google Scholar 

  81. Stuart, C. A., Neelon, F. A. & Lebovitz, H. E. Disordered control of thirst in hypothalamic-pituitary sarcoidosis. N. Engl. J. Med. 303, 1078–1082 (1980).

    Article  CAS  PubMed  Google Scholar 

  82. Ittasakul, P. & Goldman, M. B in Hyponatremia: Evaluation and Treatment (ed. Simon, E. E.) 159–173 (Springer, New York, 2013).

  83. Goldman, M. B. Brain circuit dysfunction in a distinct subset of chronic psychotic patients. Schizophr. Res. 157, 204–213 (2014). This review describes the mechanism of water imbalance in polydipsic patients with schizophrenia with and without PIP and its relationship to the underlying psychotic disorder.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lodge, D. J. & Grace, A. A. Developmental pathology, dopamine, stress and schizophrenia. Int. J. Dev. Neurosci. 29, 207–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Fukunaka, Y. et al. The orexin 1 receptor (HCRTR1) gene as a susceptibility gene contributing to polydipsia-hyponatremia in schizophrenia. Neuromolecular Med. 9, 292–297 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Luchins, D. J., Goldman, M. B., Lieb, M. & Hanrahan, P. Repetitive behaviors in chronically institutionalized schizophrenic patients. Schizophr. Res. 8, 119–123 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Mittleman, G., Whishaw, I. Q., Jones, G. H., Koch, M. & Robbins, T. W. Cortical, hippocampal, and striatal mediation of schedule-induced behaviors. Behav. Neurosci. 104, 399–409 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Navarro, S. V. et al. Behavioral biomarkers of schizophrenia in high drinker rats: a potential endophenotype of compulsive neuropsychiatric disorders. Schizophr. Bull. 43, 778–787 (2017).

    Article  PubMed  Google Scholar 

  90. Umbricht, D. Polydipsia and hippocampal pathology. Biol. Psychiatry 36, 709–710 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Didriksen, M., Olsen, G. M. & Christensen, A. V. Effect of clozapine upon schedule-induced polydipsia (SIP) resembles neither the actions of dopamine D1 nor D2 blockade. Psychopharmacology 113, 250–256 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Augustine, V. et al. Hierarchical neural architecture underlying thirst regulation. Nature 555, 204–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zimmerman, C. A., Leib, D. E. & Knight, Z. A. Neural circuits underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18, 459–469 (2017). This review summarizes the evidence for the role of individual populations of neurons in the lamina terminalis in modulating pre-ingestive, pre-systemic and homeostatic influences on water intake and excretion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Leib, D. E. et al. The forebrain thirst circuit drives drinking through negative reinforcement. Neuron 96, 1272–1281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hsu, T. M., McCutcheon, J. E. & Roitman, M. F. Parallels and overlap: the integration of homeostatic signals by mesolimbic dopamine neurons. Front. Psychiatry 9, 410 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Barron, W. M. et al. Transient vasopressin-resistant diabetes insipidus of pregnancy. N. Engl. J. Med. 310, 442–444 (1984).

    Article  CAS  PubMed  Google Scholar 

  97. Durr, J. A., Hoggard, J. G., Hunt, J. M. & Schrier, R. W. Diabetes insipidus in pregnancy associated with abnormally high circulating vasopressinase activity. N. Engl. J. Med. 316, 1070–1074 (1987).

    Article  CAS  PubMed  Google Scholar 

  98. Iwasaki, Y. et al. Aggravation of subclinical diabetes insipidus during pregnancy. N. Engl. J. Med. 324, 522–526 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Hashimoto, M. et al. Manifestation of subclinical diabetes insipidus due to pituitary tumor during pregnancy. Endocr. J. 43, 577–583 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Czaczkes, J. W., Kleeman, C. R. & Koenig, M. Physiologic studies of antidiuretic hormone by its direct measurement in human plasma. J. Clin. Invest. 43, 1625–1640 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schrier, R. W. Systemic arterial vasodilation, vasopressin, and vasopressinase in pregnancy. J. Am. Soc. Nephrol. 21, 570–572 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Fenske, W. et al. A copeptin-based approach in the diagnosis of diabetes insipidus. N. Engl. J. Med. 379, 428–439 (2018). This study showed that a copeptin-based approach could be the new gold standard in the diagnosis of different types of DI.

    Article  CAS  PubMed  Google Scholar 

  103. Adrogue, H. J. & Madias, N. E. Hypernatremia. N. Engl. J. Med. 342, 1493–1499 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Palevsky, P. M., Bhagrath, R. & Greenberg, A. Hypernatremia in hospitalized patients. Ann. Intern. Med. 124, 197–203 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Riggs, J. E. Neurologic manifestations of fluid and electrolyte disturbances. Neurol. Clin. 7, 509–523 (1989).

    Article  CAS  PubMed  Google Scholar 

  106. Baumann, G. & Dingman, J. F. Distribution, blood transport, and degradation of antidiuretic hormone in man. J. Clin. Invest. 57, 1109–1116 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Robertson, G. L. in Endocrinology and Metabolism 3rd edn (eds Felig, P., Baxter, J. D. & Frohman, L. A.) 385–432 (McGraw-Hill, New York, 1995).

  108. Verbalis, J. G. Disorders of body water homeostasis. Best Pract. Res. Clin. Endocrinol. Metab. 17, 471–503 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Miller, M., Dalakos, T., Moses, A. M., Fellerman, H. & Streeten, D. H. Recognition of partial defects in antidiuretic hormone secretion. Ann. Intern. Med. 73, 721–729 (1970).

    Article  CAS  PubMed  Google Scholar 

  110. Van de Heijning, B. J., Koekkoek-van den Herik, I., Ivanyi, T. & Van Wimersma Greidanus, T. B. Solid-phase extraction of plasma vasopressin: evaluation, validation and application. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 565, 159–171 (1991).

    Article  Google Scholar 

  111. Wun, T. Vasopressin and platelets: a concise review. Platelets 8, 15–22 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Preibisz, J. J., Sealey, J. E., Laragh, J. H., Cody, R. J. & Weksler, B. B. Plasma and platelet vasopressin in essential hypertension and congestive heart failure. Hypertension 5, I129–138 (1983).

    Article  CAS  PubMed  Google Scholar 

  113. Cadnapaphornchai, M. A. et al. Effect of primary polydipsia on aquaporin and sodium transporter abundance. Am. J. Physiol. Renal Physiol. 285, F965–F971 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Berliner, R. W. & Davidson, D. G. Production of hypertonic urine in the absence of pituitary antidiuretic hormone. J. Clin. Invest. 36, 1416–1427 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Robertson, G. L., Mahr, E. A., Athar, S. & Sinha, T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52, 2340–2352 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dies, F., Rangel, S. & Rivera, A. Differential diagnosis between diabetes insipidus and compulsive polydipsia. Ann. Intern. Med. 54, 710–725 (1961).

    Article  CAS  PubMed  Google Scholar 

  117. Harrington, A. R. & Valtin, H. Impaired urinary concentration after vasopressin and its gradual correction in hypothalamic diabetes insipidus. J. Clin. Invest. 47, 502–510 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Block, L. H., Furrer, J., Locher, R. A., Siegenthaler, W. & Vetter, W. Changes in tissue sensitivity to vasopressin in hereditary hypothalamic diabetes insipidus. Klin. Wochenschr. 59, 831–836 (1981).

    Article  CAS  PubMed  Google Scholar 

  119. Zerbe, R. L. & Robertson, G. L. A comparison of plasma vasopressin measurements with a standard indirect test in the differential diagnosis of polyuria. N. Engl. J. Med. 305, 1539–1546 (1981).

    Article  CAS  PubMed  Google Scholar 

  120. Morgenthaler, N. G., Struck, J., Alonso, C. & Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Czaczkes, J. W. & Kleeman, C. R. The effect of various states of hydration and the plasma concentration on the turnover of antidiuretic hormone in mammals. J. Clin. Invest. 43, 1649–1658 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Baylis, P. H. Diabetes insipidus. J. R. Coll. Physicians Lond. 32, 108–111 (1998).

    CAS  PubMed  Google Scholar 

  123. Baylis, P. H., Gaskill, M. B. & Robertson, G. L. Vasopressin secretion in primary polydipsia and cranial diabetes insipidus. Q. J. Med. 50, 345–358 (1981).

    CAS  PubMed  Google Scholar 

  124. Timper, K. et al. Diagnostic accuracy of copeptin in the differential diagnosis of the polyuria-polydipsia syndrome: a prospective multicenter study. J. Clin. Endocrinol. Metab. 100, 2268–2274 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Robertson, G. L., Shelton, R. L. & Athar, S. The osmoregulation of vasopressin. Kidney Int. 10, 25–37 (1976).

    Article  CAS  PubMed  Google Scholar 

  126. Robertson, G. L. The regulation of vasopressin function in health and disease. Recent Prog. Horm. Res. 33, 333–385 (1976).

    CAS  PubMed  Google Scholar 

  127. Fujisawa, I. et al. Posterior lobe of the pituitary in diabetes insipidus: MR findings. J. Comput. Assist. Tomogr. 11, 221–225 (1987).

    Article  CAS  PubMed  Google Scholar 

  128. Arslan, A., Karaarslan, E. & Dincer, A. High intensity signal of the posterior pituitary. A study with horizontal direction of frequency-encoding and fat suppression MR techniques. Acta Radiol. 40, 142–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Moses, A. M., Clayton, B. & Hochhauser, L. Use of T1-weighted MR imaging to differentiate between primary polydipsia and central diabetes insipidus. AJNR Am. J. Neuroradiol. 13, 1273–1277 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Cote, M., Salzman, K. L., Sorour, M. & Couldwell, W. T. Normal dimensions of the posterior pituitary bright spot on magnetic resonance imaging. J. Neurosurg. 120, 357–362 (2014).

    Article  PubMed  Google Scholar 

  131. Hannon, M. et al. Anterior hypopituitarism is rare and autoimmune disease is common in adults with idiopathic central diabetes insipidus. Clin. Endocrinol. 76, 725–728 (2011).

    Article  CAS  Google Scholar 

  132. Maghnie, M. et al. Correlation between magnetic resonance imaging of posterior pituitary and neurohypophyseal function in children with diabetes insipidus. J. Clin. Endocrinol. Metab. 74, 795–800 (1992).

    Article  CAS  PubMed  Google Scholar 

  133. Bonneville, J. F. MRI of hypophysitis [French]. Ann. Endocrinol. 73, 76–77 (2012).

    Article  Google Scholar 

  134. Gubbi, S., Hannah-Shmouni, F., Stratakis, C. A. & Koch, C. A. Primary hypophysitis and other autoimmune disorders of the sellar and suprasellar regions. Rev. Endocr. Metab. Disord. 19, 335–347 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Leger, J., Velasquez, A., Garel, C., Hassan, M. & Czernichow, P. Thickened pituitary stalk on magnetic resonance imaging in children with central diabetes insipidus. J. Clin. Endocrinol. Metab. 84, 1954–1960 (1999).

    CAS  PubMed  Google Scholar 

  136. Verbalis, J. G. in Brenner and Rector’s The Kidney 9th edn (eds Maarten, T. et al.) 552–569 (Saunders, Philadelphia, 2011).

  137. Marques, P., Gunawardana, K. & Grossman, A. Transient diabetes insipidus in pregnancy. Endocrinol. Diabetes Metab. Case Rep. 2015, 150078 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Lindheimer, M. D. Polyuria and pregnancy: its cause, its danger. Obstet. Gynecol. 105, 1171–1172 (2005).

    Article  PubMed  Google Scholar 

  139. Dabrowski, E., Kadakia, R. & Zimmerman, D. Diabetes insipidus in infants and children. Best Pract. Res. Clin. Endocrinol. Metab. 30, 317–328 (2016).

    Article  PubMed  Google Scholar 

  140. Gubbi, S., Hannah-Shmouni, F., Koch, C. A. & Verbalis, J. G. in Endotext [Internet] (eds Feingold, K. R. et al.) (MDText.com, Inc., South Dartmouth (MA), 2000).

  141. Barker, J. M. Clinical review: type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening. J. Clin. Endocrinol. Metab. 91, 1210–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Akbari, H. et al. Clinical outcomes of endoscopic versus microscopic trans-sphenoidal surgery for large pituitary adenoma. Br. J. Neurosurg. 32, 206–209 (2018).

    Article  PubMed  Google Scholar 

  143. Rajaratnam, S., Seshadri, M. S., Chandy, M. J. & Rajshekhar, V. Hydrocortisone dose and postoperative diabetes insipidus in patients undergoing transsphenoidal pituitary surgery: a prospective randomized controlled study. Br. J. Neurosurg. 17, 437–442 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Garofeanu, C. G. et al. Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am. J. Kidney Dis. 45, 626–637 (2005).

    Article  PubMed  Google Scholar 

  145. Gullans, S. R. & Verbalis, J. G. Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu. Rev. Med. 44, 289–301 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Verbalis, J. G. Brain volume regulation in response to changes in osmolality. Neuroscience 168, 862–870 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Sterns, R. H. Disorders of plasma sodium—causes, consequences, and correction. N. Engl. J. Med. 372, 55–65 (2015).

    Article  PubMed  CAS  Google Scholar 

  148. Bruck, E., Abal, G. & Aceto, T. Jr. Pathogenesis and pathophysiology of hypertonic dehydration with diarrhea. A clinical study of 59 infants with observations of respiratory and renal water metabolism. Am. J. Dis. Child. 115, 122–144 (1968).

    Article  CAS  PubMed  Google Scholar 

  149. Fang, C. et al. Fluid management of hypernatraemic dehydration to prevent cerebral oedema: a retrospective case control study of 97 children in China. J. Paediatr. Child Health 46, 301–303 (2010).

    Article  PubMed  Google Scholar 

  150. Bockenhauer, D. & Bichet, D. G. Nephrogenic diabetes insipidus. Curr. Opin. Pediatr. 29, 199–205 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Sterns, R. H. Treatment of severe hyponatremia. Clin. J. Am. Soc. Nephrol. 13, 641–649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Oiso, Y., Robertson, G. L., Norgaard, J. P. & Juul, K. V. Clinical review: treatment of neurohypophyseal diabetes insipidus. J. Clin. Endocrinol. Metab. 98, 3958–3967 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Richardson, D. W. & Robinson, A. G. Desmopressin. Ann. Intern. Med. 103, 228–239 (1985).

    Article  CAS  PubMed  Google Scholar 

  154. Lam, K. S. et al. Pharmacokinetics, pharmacodynamics, long-term efficacy and safety of oral 1-deamino-8-D-arginine vasopressin in adult patients with central diabetes insipidus. Br. J. Clin. Pharmacol. 42, 379–385 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rittig, S., Jensen, A. R., Jensen, K. T. & Pedersen, E. B. Effect of food intake on the pharmacokinetics and antidiuretic activity of oral desmopressin (DDAVP) in hydrated normal subjects. Clin. Endocrinol. 48, 235–241 (1998).

    Article  CAS  Google Scholar 

  156. Behan, L. A. et al. Abnormal plasma sodium concentrations in patients treated with desmopressin for cranial diabetes insipidus: results of a long-term retrospective study. Eur. J. Endocrinol. 172, 243–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Verbalis, J. G. et al. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am. J. Med. 126, S1–S42 (2013).

    Article  PubMed  Google Scholar 

  158. Sood, M. M. et al. Acute kidney injury in critically ill patients infected with 2009 pandemic influenza A(H1N1): report from a Canadian Province. Am. J. Kidney Dis. 55, 848–855 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Achinger, S. G., Arieff, A. I., Kalantar-Zadeh, K. & Ayus, J. C. Desmopressin acetate (DDAVP)-associated hyponatremia and brain damage: a case series. Nephrol. Dial. Transplant. 29, 2310–2315 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Schreckinger, M., Szerlip, N. & Mittal, S. Diabetes insipidus following resection of pituitary tumors. Clin. Neurol. Neurosurg. 115, 121–126 (2013).

    Article  PubMed  Google Scholar 

  161. Dohanics, J., Hoffman, G. E. & Verbalis, J. G. Chronic hyponatremia reduces survival of magnocellular vasopressin and oxytocin neurons after axonal injury. J. Neurosci. 16, 2373–2380 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Loh, J. A. & Verbalis, J. G. Disorders of water and salt metabolism associated with pituitary disease. Endocrinol. Metab. Clin. North Am. 37, 213–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Eisenberg, Y. & Frohman, L. A. Adipsic diabetes insipidus: a review. Endocr. Pract. 22, 76–83 (2016).

    Article  PubMed  Google Scholar 

  164. Cuesta, M., Hannon, M. J. & Thompson, C. J. Adipsic diabetes insipidus in adult patients. Pituitary 20, 372–380 (2017).

    Article  PubMed  Google Scholar 

  165. Batlle, D. C., von Riotte, A. B., Gaviria, M. & Grupp, M. Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. N. Engl. J. Med. 312, 408–414 (1985).

    Article  CAS  PubMed  Google Scholar 

  166. Crawford, J. D. & Kennedy, G. C. Chlorothiazid in diabetes insipidus. Nature 183, 891–892 (1959).

    Article  CAS  PubMed  Google Scholar 

  167. Earley, L. E. & Orloff, J. The mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant diabetes insipidus. J. Clin. Invest. 41, 1988–1997 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sinke, A. P. et al. Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter. Am. J. Physiol. Renal Physiol. 306, F525–F533 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. de Groot, T. et al. Acetazolamide attenuates lithium-induced nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 27, 2082–2091 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Gordon, C. E., Vantzelfde, S. & Francis, J. M. Acetazolamide in lithium-induced nephrogenic diabetes insipidus. N. Engl. J. Med. 375, 2008–2009 (2016).

    Article  PubMed  Google Scholar 

  171. Rosa, R. M. et al. A study of induced hyponatremia in the prevention and treatment of sickle-cell crisis. N. Engl. J. Med. 303, 1138–1143 (1980).

    Article  CAS  PubMed  Google Scholar 

  172. Usberti, M. et al. Renal prostaglandin E2 in nephrogenic diabetes insipidus: effects of inhibition of prostaglandin synthesis by indomethacin. J. Pediatr. 97, 476–478 (1980).

    Article  CAS  PubMed  Google Scholar 

  173. Boussemart, T., Nsota, J., Martin-Coignard, D. & Champion, G. Nephrogenic diabetes insipidus: treat with caution. Pediatr. Nephrol. 24, 1761–1763 (2009).

    Article  PubMed  Google Scholar 

  174. Bockenhauer, D. et al. Vasopressin type 2 receptor V88M mutation: molecular basis of partial and complete nephrogenic diabetes insipidus. Nephron Physiol. 114, 1–10 (2010).

    Article  CAS  Google Scholar 

  175. Canfield, M. C., Tamarappoo, B. K., Moses, A. M., Verkman, A. S. & Holtzman, E. J. Identification and characterization of aquaporin-2 water channel mutations causing nephrogenic diabetes insipidus with partial vasopressin response. Hum. Mol. Genet. 6, 1865–1871 (1997).

    Article  CAS  PubMed  Google Scholar 

  176. Josiassen, R. C. et al. Double-blind, placebo-controlled, multicenter trial of a vasopressin V2-receptor antagonist in patients with schizophrenia and hyponatremia. Biol. Psychiatry 64, 1097–1100 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Canuso, C. M. & Goldman, M. B. Clozapine restores water balance in schizophrenic patients with polydipsia-hyponatremia syndrome. J. Neuropsychiatry Clin. Neurosci. 11, 86–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  178. Goldman, M. & Ittasakul, P. in Schizophrenia: Recent Advances in Diagnosis and Treatment (eds Janicak, P. G., Goldman, M., Tandon, R. & Marder, S. R.) 205–224 (Springer, New York, 2014).

  179. Ahmed, S. E. & Khan, A. H. Acetazolamide: treatment of psychogenic polydipsia. Cureus 9, e1553 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. Costanzo, E. S., Antes, L. M. & Christensen, A. J. Behavioral and medical treatment of chronic polydipsia in a patient with schizophrenia and diabetes insipidus. Psychosom. Med. 66, 283–286 (2004).

    Article  PubMed  Google Scholar 

  181. Ray, J. G. DDAVP use during pregnancy: an analysis of its safety for mother and child. Obstet. Gynecol. Surv. 53, 450–455 (1998).

    Article  CAS  PubMed  Google Scholar 

  182. Burrow, G. N., Wassenaar, W., Robertson, G. L. & Sehl, H. DDAVP treatment of diabetes insipidus during pregnancy and the post-partum period. Acta Endocrinol. 97, 23–25 (1981).

    Article  CAS  Google Scholar 

  183. Nozaki, A. et al. Quality of life in the patients with central diabetes insipidus assessed by Nagasaki Diabetes Insipidus Questionnaire. Endocrine 51, 140–147 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Richards, G. E. et al. Natural history of idiopathic diabetes insipidus. J. Pediatr. 159, 566–570 (2011).

    Article  PubMed  Google Scholar 

  185. Ishii, H. et al. Development and validation of a new questionnaire assessing quality of life in adults with hypopituitarism: Adult Hypopituitarism Questionnaire (AHQ). PLOS ONE 7, e44304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ito, A., Nozaki, A., Horie, I., Ando, T. & Kawakami, A. Relation between change in treatment for central diabetes insipidus and body weight loss. Minerva Endocrinol. 44, 85–90 (2019).

    PubMed  Google Scholar 

  187. Juul, K. V., Schroeder, M., Rittig, S. & Norgaard, J. P. National Surveillance of Central Diabetes Insipidus (CDI) in Denmark: results from 5 years registration of 9309 prescriptions of desmopressin to 1285 CDI patients. J. Clin. Endocrinol. Metab. 99, 2181–2187 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Byun, D. J., Wolchok, J. D., Rosenberg, L. M. & Girotra, M. Cancer immunotherapy — immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 13, 195–207 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhao, C. et al. Anti-PD-L1 treatment induced central diabetes insipidus. J. Clin. Endocrinol. Metab. 103, 365–369 (2018).

    Article  PubMed  Google Scholar 

  190. Merimee, T. J., Rabinowtitz, D. & Fineberg, S. E. Arginine-initiated release of human growth hormone. Factors modifying the response in normal man. N. Engl. J. Med. 280, 1434–1438 (1969).

    Article  CAS  PubMed  Google Scholar 

  191. Nair, N. P. et al. Effect of normal aging on the prolactin response to graded doses of sulpiride and to arginine. Prog. Neuropsychopharmacol. Biol. Psychiatry 9, 633–637 (1985).

    Article  CAS  PubMed  Google Scholar 

  192. Winzeler, B. et al. Arginine-stimulated copeptin measurements in the differential diagnosis of diabetes insipidus: a prospective diagnostic study. Lancet https://doi.org/10.1016/S0140-6736(19)31255-3 (2019).

  193. Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ando, F. & Uchida, S. Activation of AQP2 water channels without vasopressin: therapeutic strategies for congenital nephrogenic diabetes insipidus. Clin. Exp. Nephrol. 22, 501–507 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Milano, S., Carmosino, M., Gerbino, A., Svelto, M. & Procino, G. Hereditary nephrogenic diabetes insipidus: pathophysiology and possible treatment. An update. Int. J. Mol. Sci. 18, E2385 (2017).

    Article  PubMed  CAS  Google Scholar 

  196. Feldman, B. J. et al. Nephrogenic syndrome of inappropriate antidiuresis. N. Engl. J. Med. 352, 1884–1890 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Biebermann, H. et al. A new multi-system disorder caused by the Gαs mutation p.F376V. J. Clin. Endocrinol. Metab. 104, 1079–1089 (2019).

    Article  PubMed  Google Scholar 

  198. Tamarappoo, B. K. & Verkman, A. S. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J. Clin. Invest. 101, 2257–2267 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank N. Salvisberg for help with referencing.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.C.-C.); Epidemiology (W.K.F.); Mechanisms/pathophysiology (D.G.B., M.B.G., S.R., J.G.V. and A.S.V.); Diagnosis, screening and prevention (M.C.-C and W.K.F.); Management (D.G.B., M.B.G. and J.G.V.); Quality of life (M.B.G.); Outlook (M.C.-C., D.G.B., W.K.F., M.B.G., S.R, J.G.V. and A.S.V.).

Corresponding author

Correspondence to Mirjam Christ-Crain.

Ethics declarations

Competing interests

M.C.-C. and W.K.F. received speaking honoraria from Thermo Fisher AG, the manufacturer of the copeptin assay. All the other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks H. Arima, M. Magnie, S. Sasaki and Y. Sugimura for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

OMIM: http://www.ncbi.nlm.nih.gov/omim/

Wolfram syndrome: https://omim.org/entry/222300

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christ-Crain, M., Bichet, D.G., Fenske, W.K. et al. Diabetes insipidus. Nat Rev Dis Primers 5, 54 (2019). https://doi.org/10.1038/s41572-019-0103-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0103-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing