Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contribution of reactive oxygen species to thymineless death in Escherichia coli

Abstract

Nutrient starvation usually halts cell growth rather than causing death. Thymine starvation is exceptional, because it kills cells rapidly. This phenomenon, called thymineless death (TLD), underlies the action of several antibacterial, antimalarial, anticancer, and immunomodulatory agents. Many explanations for TLD have been advanced, with recent efforts focused on recombination proteins and replication origin (oriC) degradation. Because current proposals account for only part of TLD and because reactive oxygen species (ROS) are implicated in bacterial death due to other forms of harsh stress, we investigated the possible involvement of ROS in TLD. Here, we show that thymine starvation leads to accumulation of both single-stranded DNA regions and intracellular ROS, and interference with either event protects bacteria from double-stranded DNA breakage and TLD. Elevated levels of single-stranded DNA were necessary but insufficient for TLD, whereas reduction of ROS to background levels largely abolished TLD. We conclude that ROS contribute to TLD by converting single-stranded DNA lesions into double-stranded DNA breaks. Participation of ROS in the terminal phases of TLD provides a specific example of how ROS contribute to stress-mediated bacterial self-destruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Association of ROS with TLD.
Fig. 2: Suppression of ROS accumulation during T-starvation by rifampicin, chloramphenicol or deficiencies in respiratory-chain genes.
Fig. 3: ssDNA regions are necessary but insufficient for TLD.
Fig. 4: dsDNA breaks associated with TLD.
Fig. 5: Conversion of ssDNA regions into lethal breaks by exogenous ROS.
Fig. 6: Scheme describing ROS-mediated conversion of ssDNA regions into lethal DSBs during TLD.

Similar content being viewed by others

References

  1. Ahmad, S. I., Kirk, S. H. & Eisenstark, A. Thymine metabolism and thymineless death in prokaryotes and eukaryotes. Annu. Rev. Microbiol. 52, 591–625 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Cohen, S. S. & Barner, H. D. Studies on unbalanced growth in Escherichia coli. Proc. Natl Acad. Sci. USA 40, 885–893 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith, D. W. & Hanawalt, P. C. Macromolecular synthesis and thymineless death in Mycoplasma laidlawii B. J. Bacteriol. 96, 2066–2076 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sat, B., Reches, M. & Engelberg-Kulka, H. The Escherichia coli mazEF suicide module mediates thymineless death. J. Bacteriol. 185, 1803–1807 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kunz, B. A. & Glickman, B. W. Mechanism of mutation by thymine starvation in Escherichia coli: clues from mutagenic specificity. J. Bacteriol. 162, 859–864 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fonville, N. C., Bates, D., Hastings, P. J., Hanawalt, P. C. & Rosenberg, S. M. Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genet. 6, e1000865 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nakayama, K., Kusano, K., Irino, N. & Nakayama, H. Thymine starvation-induced structural changes in Escherichia coli DNA. Detection by pulsed field gel electrophoresis and evidence for involvement of homologous recombination. J. Mol. Biol. 243, 611–620 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Pauling, C. & Hanawalt, P. Nonconservative DNA replication in bacteria after thymine starvation. Proc. Natl Acad. Sci. USA 54, 1728–1735 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuong, K. J. & Kuzminov, A. Stalled replication fork repair and misrepair during thymineless death in Escherichia coli. Genes Cells 15, 619–634 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Magner, D. B. et al. RecQ promotes toxic recombination in cells lacking recombination intermediate-removal proteins. Mol. Cell 26, 273–286 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fonville, N. C., Vaksman, Z., DeNapoli, J., Hastings, P. J. & Rosenberg, S. M. Pathways of resistance to thymineless death in Escherichia coli and the function of UvrD. Genetics 189, 23–36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sangurdekar, D. P. et al. Thymineless death is associated with loss of essential genetic information from the replication origin. Mol. Microbiol. 75, 1455–1467 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Martin, C. M. & Guzman, E. C. DNA replication initiation as a key element in thymineless death. DNA Repair 10, 94–101 (2011).

    Article  CAS  Google Scholar 

  14. Kuong, K. J. & Kuzminov, A. Disintegration of nascent replication bubbles during thymine starvation triggers RecA- and RecBCD-dependent replication origin destruction. J. Biol. Chem. 287, 23958–23970 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin, C. M., Viguera, E. & Guzman, E. C. Rifampicin suppresses thymineless death by blocking the transcription-dependent step of chromosome initiation. DNA Repair  18, 10–17 (2014).

    Article  CAS  Google Scholar 

  16. Morganroth, P. A. & Hanawalt, P. C. Role of DNA replication and repair in thymineless death in Escherichia coli. J. Bacteriol. 188, 5286–5288 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamilton, H. M. et al. Thymineless death is inhibited by CsrA in Escherichia coli lacking the SOS response. DNA Repair 12, 993–999 (2013).

    Article  CAS  Google Scholar 

  18. Khodursky, A., Guzman, E. C. & Hanawalt, P. C. Thymineless death lives on: new insights into a classic phenomenon. Annu. Rev. Microbiol. 69, 247–263 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Nakayama, H. et al. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol. Gen. Genet. 195, 474–480 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Nakayama, K., Shiota, S. & Nakayama, H. Thymineless death in Escherichia coli mutants deficient in the RecF recombination pathway. Can. J. Microbiol. 34, 905–907 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Courcelle, J. & Hanawalt, P. C. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Mol. Gen. Genet. 262, 543–551 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ayusawa, D., Shimizu, K., Koyama, H., Takeishi, K. & Seno, T. Accumulation of DNA strand breaks during thymineless death in thymidylate synthase-negative mutants of mouse FM3A cells. J. Biol. Chem. 258, 12448–12454 (1983).

    CAS  PubMed  Google Scholar 

  23. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Dorsey-Oresto, A. et al. YihE kinase is a central regulator of programmed cell death in bacteria. Cell Rep. 3, 528–537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, X. & Drlica, K. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 21, 1–6 (2014).

    Article  PubMed  Google Scholar 

  26. Dwyer, D. J., Collins, J. J. & Walker, G. C. Unraveling the physiological complexities of antibiotic lethality. Annu. Rev. Pharmacol. Toxicol. 55, 313–332 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Demougeot, C. et al. Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2′-dipyridyl in the rat photothrombotic ischemic stroke model. J. Pharmacol. Exp. Ther. 311, 1080–1087 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. & Freeman, B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl Acad. Sci. USA 87, 1620–1624 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanawalt, P. C. Involvement of synthesis of RNA in thymineless death. Nature 198, 286 (1963).

    Article  CAS  PubMed  Google Scholar 

  30. Pinney, R. J. & Smith, J. T. R factor elimination during thymine starvation: effects of inhibition of protein synthesis and readdition of thymine. J. Bacteriol. 111, 361–367 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lobritz, M. A. et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl Acad. Sci. USA 112, 8173–8180 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Borisov, V. B. et al. Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. Proc. Natl Acad. Sci. USA 108, 17320–17324 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morimatsu, K. & Kowalczykowski, S. C. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol. Cell 11, 1337–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Morimatsu, K. & Kowalczykowski, S. C. RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination. Proc. Natl Acad. Sci. USA 111, E5133–E5142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crooke, S. T. et al. Kinetic characteristics of Escherichia coli RNase H1: cleavage of various antisense oligonucleotide–RNA duplexes. Biochem. J. 312(Pt 2), 599–608 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kitani, T., Yoda, K. Y., Ogawa, T. & Okazaki, T. Evidence that discontinuous DNA-replication in Escherichia coli is primed by approximately 10 to 12 residues of RNA starting with a purine. J. Mol. Biol. 184, 45–52 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Ogawa, T. & Okazaki, T. Function of RNase H in DNA replication revealed by RNase H defective mutants of Escherichia coli. Mol. Gen. Genet. 193, 231–237 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Shimamoto, T., Shimada, M., Inouye, M. & Inouye, S. The role of ribonuclease H in multicopy single-stranded DNA synthesis in retron-Ec73 and retron-Ec107 of Escherichia coli. J. Bacteriol. 177, 264–267 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakayama, H. & Hanawalt, P. Sedimentation analysis of deoxyribonucleic acid from thymine-starved Escherichia coli. J. Bacteriol. 121, 537–547 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lark, K. G. Evidence for the direct involvement of RNA in the initiation of DNA replication in Escherichia coli 15T. J. Mol. Biol. 64, 47–60 (1972).

    Article  CAS  PubMed  Google Scholar 

  41. Campbell, E. A. et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi, S., Ueda, K. & Komano, T. The effects of metal ions on the DNA damage induced by hydrogen peroxide. Agric. Biol. Chem. 54, 69–76 (1990).

    CAS  PubMed  Google Scholar 

  43. Foti, J. J., Devadoss, B., Winkler, J. A., Collins, J. J. & Walker, G. C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 336, 315–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cadet, J., Ravanat, J. L., TavernaPorro, M., Menoni, H. & Angelov, D. Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett. 327, 5–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Hanawalt, P. C. et al. Repair replication of DNA in vivo. Cold Spring Harb. Symp. Quant. Biol. 33, 187–194 (1968).

    Article  CAS  PubMed  Google Scholar 

  46. Bendich, A. J. The form of chromosomal DNA molecules in bacterial cells. Biochimie 83, 177–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Hecht, R. M. & Pettijohn, D. E. Studies of DNA bound RNA molecules isolated from nucleoids of Escherichia coli. Nucleic Acids Res. 3, 767–788 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G. & Collins, J. J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, L. et al. Ribosomal elongation factor 4 promotes cell death associated with lethal stress. mBio 5, e01708 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Davies, B. W. et al. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol. Cell 36, 845–860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bass, D. A. et al. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130, 1910–1917 (1983).

    CAS  PubMed  Google Scholar 

  52. Dickinson, B. C. & Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Drummen, G. P., van Liebergen, L. C., Op den Kamp, J. A. & Post, J. A. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic. Biol. Med. 33, 473–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Kidane, D., Sanchez, H., Alonso, J. C. & Graumann, P. L. Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Mol. Microbiol. 52, 1627–1639 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Youngren, B., Nielsen, H. J., Jun, S. & Austin, S. The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer. Genes Dev. 28, 71–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Skinner, S. O., Sepulveda, L. A., Xu, H. & Golding, I. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat. Protoc. 8, 1100–1113 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank G.C. Walker, S.M. Rosenberg, K. Gerdes, D. Jin, J. Imlay and H. Aiba for strains and D. Dubnau, J. Freundlich, M. Gennaro, M. Neiditch and B. Shopsin for critical comments on the manuscript. The authors also acknowledge support from grants from the National Institutes of Health (DP2OD007423 and R01 AI07341) and the National Natural Science Foundation of China (81473251).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. conducted most of the experiments. Y.H., L.L. and G.L. conducted flow cytometry and microscopy assays. Y.H., L.L., G.L., K.D. and X.Z. analysed the data. Y.H., K.D. and X.Z. designed the study and wrote the manuscript.

Corresponding author

Correspondence to Xilin Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–14, Supplementary References, Supplementary Table 1.

Life Sciences Reporting Summary

Reporting Summary Checklist

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Li, L., Luan, G. et al. Contribution of reactive oxygen species to thymineless death in Escherichia coli . Nat Microbiol 2, 1667–1675 (2017). https://doi.org/10.1038/s41564-017-0037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0037-y

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology