Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRIM23 mediates virus-induced autophagy via activation of TBK1

Abstract

Autophagy and interferon (IFN)-mediated innate immunity are critical antiviral defence mechanisms, and recent evidence indicated that tripartite motif (TRIM) proteins are important regulators of both processes. Although the role of TRIM proteins in modulating antiviral cytokine responses has been well established, much less is known about their involvement in autophagy in response to different viral pathogens. Through a targeted RNAi screen examining the relevance of selected TRIM proteins in autophagy induced by herpes simplex virus 1 (HSV-1), encephalomyocarditis virus (EMCV) and influenza A virus (IAV), we identified several TRIM proteins that regulate autophagy in a virus-species-specific manner, as well as a few TRIM proteins that were essential for autophagy triggered by all three viruses and rapamycin, among them TRIM23. TRIM23 was critical for autophagy-mediated restriction of multiple viruses, and this activity was dependent on both its RING E3 ligase and ADP-ribosylation factor (ARF) GTPase activity. Mechanistic studies revealed that unconventional K27-linked auto-ubiquitination of the ARF domain is essential for the GTP hydrolysis activity of TRIM23 and activation of TANK-binding kinase 1 (TBK1) by facilitating its dimerization and ability to phosphorylate the selective autophagy receptor p62. Our work identifies the TRIM23-TBK1-p62 axis as a key component of selective autophagy and further reveals a role for K27-linked ubiquitination in GTPase-dependent TBK1 activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TRIM proteins modulate viral-induced autophagy in a virus species-specific manner.
Fig. 2: TRIM23 is essential for virus-induced autophagy.
Fig. 3: K27-linked auto-ubiquitination of the ARF domain of TRIM23 is necessary for its autophagy function.
Fig. 4: ARF ubiquitination is required for the GTP hydrolysis activity of TRIM23 and its localization to autophagosomes.
Fig. 5: TRIM23 interacts with TBK1 and p62.
Fig. 6: TRIM23 GTPase activates TBK1 to phosphorylate p62.

Similar content being viewed by others

References

  1. Ozato, K., Shin, D. M., Chang, T. H. & Morse III, H. C. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 8, 849–860 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Versteeg, G. A. et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 38, 384–398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Randow, F. & Youle, R. J. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15, 403–411 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tal, M. C. & Iwasaki, A. Autophagy and innate recognition systems. Curr. Top. Microbiol. Immunol. 335, 107–121 (2009).

    CAS  PubMed  Google Scholar 

  7. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039–4044 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lei, Y. et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36, 933–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allen, I. C. et al. NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-κB signaling pathways. Immunity 34, 854–865 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mandell, M. A. et al. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev. Cell 30, 394–409 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Orvedahl, A. et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1, 23–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Kanai, R. et al. Effect of γ4.5 deletions on oncolytic herpes simplex virus activity in brain tumors. J. Virol. 86, 4420–4431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Meza-Carmen, V. et al. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1. Proc. Natl Acad. Sci. USA 108, 10454–10459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Arimoto, K. et al. Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. Proc. Natl Acad. Sci. USA 107, 15856–15861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laurent-Rolle, M. et al. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon. Cell Host Microbe 16, 314–327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Orvedahl, A. et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Montespan, C. et al. Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLoS Pathog. 13, e1006217 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vitale, N., Moss, J. & Vaughan, M. ARD1, a 64-kDa bifunctional protein containing an 18-kDa GTP-binding ADP-ribosylation factor domain and a 46-kDa GTPase-activating domain. Proc. Natl Acad Sci USA 93, 1941–1944 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vichi, A., Payne, D. M., Pacheco-Rodriguez, G., Moss, J. & Vaughan, M. E3 ubiquitin ligase activity of the trifunctional ARD1 (ADP-ribosylation factor domain protein 1). Proc. Natl Acad. Sci. USA 102, 1945–1950 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mevissen, T. E. et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154, 169–184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cherfils, J. Arf GTPases and their effectors: assembling multivalent membrane-binding platforms. Curr. Opin. Struct. Biol. 29, 67–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. D’Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7, 347–358 (2006).

    Article  PubMed  Google Scholar 

  30. Vitale, N., Horiba, K., Ferrans, V. J., Moss, J. & Vaughan, M. Localization of ADP-ribosylation factor domain protein 1 (ARD1) in lysosomes and Golgi apparatus. Proc. Natl Acad. Sci. USA 95, 8613–8618 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619–18625 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Thurston, T. L. et al. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J. 35, 1779–1792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clark, K., Plater, L., Peggie, M. & Cohen, P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IκB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. J. Biol. Chem. 284, 14136–14146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsumoto, G., Wada, K., Okuno, M., Kurosawa, M. & Nukina, N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44, 279–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Soulat, D. et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27, 2135–2146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Larabi, A. et al. Crystal structure and mechanism of activation of TANK-binding kinase 1. Cell Rep. 3, 734–746 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Tu, D. et al. Structure and ubiquitination-dependent activation of TANK-binding kinase 1. Cell Rep. 3, 747–758 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Ma, X. et al. Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Proc. Natl Acad. Sci. USA 109, 9378–9383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kimura, T. et al. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 210, 973–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kimura, T. et al. Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J. 36, 42–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Narayan, K. et al. TRIM13 is a negative regulator of MDA5-mediated type I interferon production. J. Virol. 88, 10748–10757 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Matsumoto, G., Shimogori, T., Hattori, N. & Nukina, N. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 24, 4429–4442 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Zaffagnini, G. & Martens, S. Mechanisms of selective autophagy. J. Mol. Biol. 428, 1714–1724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, S., Wang, L., Berman, M., Kong, Y. Y. & Dorf, M. E. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity 35, 426–440 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davis, M. E. & Gack, M. U. Ubiquitination in the antiviral immune response. Virology 479–480, 52–65 (2015).

    Article  PubMed  Google Scholar 

  48. Ni, H. M. et al. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 7, 188–204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ding, W. X. et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am. J. Pathol. 171, 513–524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feng, Y. & Longmore, G. D. The LIM protein Ajuba influences interleukin-1-induced NF-kappaB activation by affecting the assembly and activity of the protein kinase Czeta/p62/TRAF6 signaling complex. Mol. Cell. Biol. 25, 4010–4022 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liang, C. et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 8, 688–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, L., Li, S. & Dorf, M. E. NEMO binds ubiquitinated TANK-binding kinase 1 (TBK1) to regulate innate immune responses to RNA viruses. PLoS ONE 7, e43756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lim, K. L. et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci. 25, 2002–2009 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Livingston, C. M., Ifrim, M. F., Cowan, A. E. & Weller, S. K. Virus-induced chaperone-enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog. 5, e1000619 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Gaush, C. R. & Youngner, J. S. A tissue culture color test for measuring influenza virus and antibody. Proc. Soc. Exp. Biol. Med. 101, 853–856 (1959).

    Article  CAS  PubMed  Google Scholar 

  57. Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O’Neal, C. J., Jobling, M. G., Holmes, R. K. & Hol, W. G. Structural basis for the activation of cholera toxin by human ARF6-GTP. Science 309, 1093–1096 (2005).

    Article  PubMed  Google Scholar 

  59. Menetrey, J., Macia, E., Pasqualato, S., Franco, M. & Cherfils, J. Structure of Arf6-GDP suggests a basis for guanine nucleotide exchange factors specificity. Nat. Struct. Biol. 7, 466–469 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. García-Sastre (Icahn School of Medicine at Mount Sinai) and J. Jung (University of Southern California) for the TRIM cDNA library, and S. Rabkin (Harvard) for providing mutant HSV-1. The authors also thank M. Ericsson (Harvard Electron Microscopy Facility) for assistance with sample preparation and S. Hwang (The University of Chicago) for discussions. This study was supported in part by the US National Institutes of Health grants R01 AI087846 and R21 AI118509 (to M.U.G.) and R01 GM112508 (to O.P.). K.M.J.S. and F.F. were supported by fellowships from the German Research Foundation (SP 1600/1-1 and FU 949/1-1, respectively). G.P.-R., J.K., J.M. and M.V. were supported by the Intramural Research Program of the NIH (National Heart, Lung, and Blood Institute). M.A.Z. received support by NIH training grant T32 GM007183.

Author information

Authors and Affiliations

Authors

Contributions

K.M.J.S., S.G. and M.U.G. conceived and designed the experiments. K.M.J.S. and S.G. performed and analysed all experiments, except those in Supplementary Fig. 4f (M.A.Z.), Supplementary Fig. 2b,c (F.F.) and Fig. 5e (Z.M.P.). G.J.B. performed mutagenesis experiments. J.K., G.P.-R., J.M. and M.V. provided TRIM23 −/− and WT MEFs. C.L. contributed reagents, materials and analysis tools for experiments. O.P. performed the TRIM23 ARF structure modelling. K.M.J.S. and M.U.G. wrote the manuscript.

Corresponding author

Correspondence to Michaela U. Gack.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sparrer, K.M.J., Gableske, S., Zurenski, M.A. et al. TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat Microbiol 2, 1543–1557 (2017). https://doi.org/10.1038/s41564-017-0017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0017-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing