Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga

Abstract

Communication between microorganisms in the marine environment has immense ecological impact by mediating trophic-level interactions and thus determining community structure1. Extracellular vesicles (EVs) are produced by bacteria2,3, archaea4, protists5 and metazoans, and can mediate pathogenicity6 or act as vectors for intercellular communication. However, little is known about the involvement of EVs in microbial interactions in the marine environment7. Here we investigated the signalling role of EVs produced during interactions between the cosmopolitan alga Emiliania huxleyi and its specific virus (EhV, Phycodnaviridae)8, which leads to the demise of these large-scale oceanic blooms9,10. We found that EVs are highly produced during viral infection or when bystander cells are exposed to infochemicals derived from infected cells. These vesicles have a unique lipid composition that differs from that of viruses and their infected host cells, and their cargo is composed of specific small RNAs that are predicted to target sphingolipid metabolism and cell-cycle pathways. EVs can be internalized by E. huxleyi cells, which consequently leads to a faster viral infection dynamic. EVs can also prolong EhV half-life in the extracellular milieu. We propose that EVs are exploited by viruses to sustain efficient infectivity and propagation across E. huxleyi blooms. As these algal blooms have an immense impact on the cycling of carbon and other nutrients11,12, this mode of cell–cell communication may influence the fate of the blooms and, consequently, the composition and flow of nutrients in marine microbial food webs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EVs produced by E. huxleyi during viral infection and in response to infochemical treatment.
Fig. 2: Characterization of lipid composition and small RNA cargo of EVs produced by E. huxleyi during infection and VFL treatment.
Fig. 3: Effect of EVs on infection dynamics and viral decay rate.
Fig. 4: Proposed model to describe the effect of EVs on viral infection in the ocean.

Similar content being viewed by others

References

  1. Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).

    Article  PubMed  Google Scholar 

  2. Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown, L., Wolf, J. M., Prados-Rosales, R. & Casadevall, A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Soler, N., Marguet, E., Verbavatz, J. M. & Forterre, P. Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales. Res. Microbiol. 159, 390–399 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Szempruch, A. J., Dennison, L., Kieft, R., Harrington, J. M. & Hajduk, S. L. Sending a message: extracellular vesicles of pathogenic protozoan parasites. Nat. Rev. Microbiol. 14, 669–675 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Yáñez-Mó, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Ves. 4, 27066 (2015).

    Article  Google Scholar 

  7. Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science 343, 183–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Wilson, W. H., Tarran, G. & Zubkov, M. V. Virus dynamics in a coccolithophore-dominated bloom in the North Sea. Deep Sea Res. II 49, 2951–2963 (2002).

    Article  Google Scholar 

  9. Bratbak, G., Egge, J. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and the termination of the algal bloom. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).

    Article  Google Scholar 

  10. Lehahn, Y. et al. Decoupling physical from biological processes to assess the impact of viruses on a mesoscale algal bloom. Curr. Biol. 24, 2041–2046 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Rost, B. & Riebesell, U. in Coccolithophores: from Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 99–125 (Springer-Verlag, Berlin, Heidelberg, 2004).

  12. Collins, J. R. et al. The multiple fates of sinking particles in the North Atlantic Ocean. Global Biogeochem. Cycles 29, 1471–1494 (2015).

    Article  CAS  Google Scholar 

  13. Malitsky, S. et al. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. New Phytol. 210, 88–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Schatz, D. et al. Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms. New Phytol. 204, 854–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deatherage, B. L. & Cookson, B. T. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80, 1948–1957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tkach, M. & Théry, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, X. et al. Characterization of the small RNA transcriptome of the marine coccolithophorid, Emiliania huxleyi. PLoS ONE 11, e0154279 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Spangenburg, E. E., Pratt, S. J. P., Wohlers, L. M. & Lovering, R. M. Use of BODIPY (493/503) to visualize intramuscular lipid droplets in skeletal muscle. J. Biomed. Biotechnol. 2011, 598358 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Daboussi, F. et al. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat. Commun. 5, 3831 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Frada, M. J. et al. Zooplankton may serve as transmission vectors for viruses infecting algal blooms in the ocean. Curr. Biol. 24, 2592–2597 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 1–15 (2011).

    Article  Google Scholar 

  22. Tzipilevich, E., Habusha, M. & Ben-Yehuda, S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell 168, 186–199 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Ruiz, E., Oosterhof, M., Sandaa, R.-A., Larsen, A. & Pagarete, A. Emerging interaction patterns in the Emiliania huxleyi–EhV system. Viruses 9, 61 (2017).

    Article  PubMed Central  Google Scholar 

  24. Highfield, A., Evans, C., Walne, A., Miller, P. I. & Schroeder, D. C. How many Coccolithovirus genotypes does it take to terminate an Emiliania huxleyi bloom? Virology 466–467, 138–145 (2014).

    Article  PubMed  Google Scholar 

  25. Ziv, C. et al. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proc. Natl Acad. Sci. USA 113, E1907–E1916 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosenwasser, S. et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean. Plant Cell 26, 2689–2707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Micro. 12, 519–528 (2014).

    Article  CAS  Google Scholar 

  29. Keller, M. D., Selvin, R. C., Claus, W. & Guillard, R. R. L. Media for the culture of oceanic ultraphytoplankton. J. Phycol. 23, 633–638 (1987).

    Article  Google Scholar 

  30. Schroeder, D. C., Oke, J., Malin, G. & Wilson, W. H. Coccolithovirus (Phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi. Arch. Virol. 147, 1685–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Pagarete, A., Allen, M. J., Wilson, W. H., Kimmance, S. A. & de Vargas, C. Host–virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest. Environ. Microbiol. 11, 2840–2848 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  PubMed  Google Scholar 

  33. Hummel, J. et al. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front. Plant Sci. 2, 54 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Degenkolbe, T. et al. Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Plant J. 72, 972–982 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Giavalisco, P. et al. Elemental formula annotation of polar and lipophilic metabolites using 13C, 15N and 34S isotope labelling, in combination with high-resolution mass spectrometry. Plant J. 68, 364–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Samarakoon, T. et al. in High-Throughput Phenotyping in Plants: Methods and Protocols (ed. Normanly, J.) 179–268 (Humana, New York, 2012).

  37. Gasulla, F. et al. The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach. Plant J. 75, 726–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Fulton, J. M. et al. Novel molecular determinants of viral susceptibility and resistance in the lipidome of Emiliania huxleyi. Environ. Microbiol. 16, 1137–1149 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  40. Feldmesser, E., Rosenwasser, S., Vardi, A. & Ben-Dor, S. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi. BMC Genomics 15, 1–16 (2014).

    Article  Google Scholar 

  41. Alcolombri, U. et al. Identification of the algal dimethyl sulfide–releasing enzyme: a missing link in the marine sulfur cycle. Science 348, 1466–1469 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gene Ontology Consortium. The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Res. 38, D331–335 (2010).

    Article  Google Scholar 

  44. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bauer, S., Grossmann, S., Vingron, M. & Robinson, P. N. Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24, 1650–1651 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Taylor, J. The estimation of numbers of bacteria by tenfold dilution series. J. Appl. Bacteriol. 25, 54–61 (1962).

    Article  Google Scholar 

  48. George, T. C. et al. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J. Immunol. Methods 311, 117–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Spitzer, M., Wildenhain, J., Rappsilber, J. & Tyers, M. BoxPlotR: a web tool for generation of box plots. Nat. Meth. 11, 121–122 (2014).

    Article  CAS  Google Scholar 

  50. Wilson, W. H. et al. Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J. Mar. Biol. Assoc. UK 82, 369–377 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Z. Porat from the Life Sciences Core Facilities, the Weizmann Institute of Science for assistance with ImageStream analysis, C. Bessudo from the Department of Plant and Environmental Sciences at the Weizmann Institute of Science for support with confocal microscopy and O. Yaron, currently at Bar Ilan University, for constructing the small RNA libraries. We also thank S. Graf van Creveld from the Vardi lab for the initial design of the model, I. Sher from the Design, Photography and Printing Branch at the Weizmann Institute of Science for assistance in designing the graphs for this manuscript and J. Weitz from the Georgia Institute of Technology for fruitful discussion. This research was supported by the European Research Council StG (INFOTROPHIC grant no. 280991) and CoG (VIROCELLSPHERE grant no. 681715) and by generous support from the Edith and Nathan Goldenberg Career Development Chair to A.V. The EM studies were supported in part by the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging at the Weizmann Institute of Science.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and A.V. conceived and designed the experiments, D.S., S.R. and A.V. wrote the manuscript. S.G.W. conducted the cryo-TEM experiment. S.M. performed the lipodomic analysis and E.F., D.S. and S.R. analysed the small RNA data.

Corresponding author

Correspondence to Assaf Vardi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary information

Supplementary Figures, Table and References

Life sciences reporting summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schatz, D., Rosenwasser, S., Malitsky, S. et al. Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nat Microbiol 2, 1485–1492 (2017). https://doi.org/10.1038/s41564-017-0024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0024-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing