Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain

Key Points

  • Many sex differences in the rodent brain are established during a sensitive period in early life.

  • Gonadal steroid hormones determine sex differences, but there is also a contribution of sex chromosome complement.

  • Epigenetic modifications in key brain regions both establish and maintain sex differences.

  • Neuroimmune and inflammatory signalling pathways are essential contributors to the masculinization of brain and behaviour.

  • Higher male vulnerability to neurodevelopmental disorders may have its origins in naturally occurring higher levels of inflammatory signalling molecules early in life.

Abstract

The study of sex differences in the brain is a topic of neuroscientific study that has broad reaching implications for culture, society and biomedical science. Recent research in rodent models has led to dramatic shifts in our views of the mechanisms underlying the sexual differentiation of the brain. These include the surprising discoveries of a role for immune cells and inflammatory mediators in brain masculinization and a role for epigenetic suppression in brain feminization. How and to what degree these findings will translate to human brain development will be questions of central importance in future research in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early life programming of adult sex differences.
Figure 2: Sex chromosomes affect brain development directly and indirectly.
Figure 3: Neuroepigenetic and neuroinflammatory contributions to sex differences in the preoptic area.
Figure 4: Epigenetic sources of brain sex differences.

Similar content being viewed by others

References

  1. Griew, S. Age and sex differences in probability learning of rats in a swimming T-maze. Gerontologia 14, 197–203 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Maren, S., De Oca, B. & Fanselow, M. S. Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res. 661, 25–34 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Perrot-Sinal, T. S. Sex differences in performance in the Morris water maze and the effects of initial nonstationary hidden platform training. Behav. Neurosci. 110, 1309–1320 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Roof, R. L. Neonatal exogenous testosterone modifies sex difference in radial arm and Morris water maze perfromance in prebubescent and adult rats. Behav. Brain Res. 53, 1–10 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Munoz-Cueto, J. A., Garcia-Segura, L. M. & Ruiz-Marcos, A. Developmental sex differences and effect of ovariectomy on the number of cortical pyramidal cell dendritic spines. Brain Res. 515, 64–68 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Sacher, J., Neumann, J., Okon-Singer, H., Gotowiec, S. & Villringer, A. Sexual dimorphism in the human brain: evidence from neuroimaging. Magn. Reson. Imaging 31, 366–375 (2013).

    Article  PubMed  Google Scholar 

  7. Ingalhalikar, M. et al. Sex differences in the structural connectome of the human brain. Proc. Natl Acad. Sci. USA 111, 823–828 (2014). In this study, diffusion tensory imaging of nearly 1,000 human brains reveals sex differences in intra-hemispheric versus inter-hemispheric connectivity.

    Article  CAS  PubMed  Google Scholar 

  8. Tunc, B. et al. Establishing a link between sex-related differences in the structural connectome and behaviour. Phil. Trans. R. Soc. B 371, 20150111 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Joel, D. & Tarrasch, R. On the mis-presentation and misinterpretation of gender-related data: the case of Ingalhalikar's human connectome study. Proc. Natl Acad. Sci. USA 111, E637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Joel, D. & Fausto-Sterling, A. Beyond sex differences: new approaches for thinking about variation in brain structure and function. Phil. Trans. R. Soc. B 371, 20150451 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. McCarthy, M., De Vries, G. & Forger, N. in Hormones, Brain and Behavior (ed. Pfaff, D. W. & Joëls, M.) 3–32 (Elsevier, 2017).

    Book  Google Scholar 

  12. Phoenix, C. H., Goy, R. W., Gerall, A. A. & Young, W. C. Organizing action of prenatally administered testosterone proprionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65, 369–382 (1959).

    Article  CAS  PubMed  Google Scholar 

  13. Bakker, J. et al. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat. Neurosci. 9, 220–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Bakker, J. & Baum, M. J. Role for estradiol in female-typical brain and behavioral sexual differentiation. Front. Neuroendocrinol. 29, 1–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Arnold, A. P. & Chen, X. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front. Neuroendocrinol. 30, 1–9 (2009).

    Article  PubMed  Google Scholar 

  16. Arnold, A. P. et al. The importance of having two X chromosomes. Phil. Trans. R. Soc. B 371, 20150113 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bramble, M. S. et al. Sex-specific effects of testosterone on the sexually dimorphic transcriptome and epigenome of embryonic neural stem/progenitor cells. Sci. Rep. 6, 36916 (2016). This study shows that, in mouse embryonic stem cells, the transcriptional response to testosterone exposure is different in males versus females in both expression levels and numbers of genes responding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goodfellow, P. N. & Lovell-Badge, R. SRY and sex determination in mammals. Annu. Rev. Genet. 27, 71–92 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Dewing, P. et al. Direct regulation of adult brain function by the male-specific factor SRY. Curr. Biol. 16, 415–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Czech, D. P. et al. The human testis-determining factor SRY localizes in midbrain dopamine neurons and regulates multiple components of catecholamine synthesis and metabolism. J. Neurochem. 122, 260–271 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Vries, G. J. et al. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J. Neurosci. 22, 9005–9014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, X. et al. Sex difference in neural tube defects in p53-null mice is caused by differences in the complement of X not Y genes. Dev. Neurobiol. 68, 265–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Gioiosa, L., Chen, X., Watkins, R., Umeda, E. A. & Arnold, A. P. Sex chromosome complement affects nociception and analgesia in newborn mice. J. Pain 9, 962–969 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Arnold, A. P. et al. Minireview: sex chromosomes and brain sexual differentiation. Endocrinology 145, 1057–1062 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Smith-Bouvier, D. L. et al. A role for sex chromosome complement in the female bias in autoimmune disease. J. Exp. Med. 205, 1099–1108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Du, S. et al. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 111, 2806–2811 (2014). This study shows that the impact of chromosome complement on disease progression in an animal model of multiple sclerosis is opposite in peripheral versus central nervous system tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Voskuhl, R. Preclinical studies of sex differences: a clinical perspective. Biol. Sex Differ. 7, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grimm, S. L., Hartig, S. M. & Edwards, D. P. Progesterone receptor signaling mechanisms. J. Mol. Biol. 428, 3831–3849 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Stanisic, V., Lonard, D. M. & O'Malley, B. W. Modulation of steroid hormone receptor activity. Prog. Brain Res. 181, 153–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Katzenellenbogen, B. S. et al. Structure-function relationships in estrogen receptors and the characterization of novel selective estrogen receptor modulators with unique pharmacological profiles. Ann. NY Acad. Sci. 949, 6–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Quan, N. & Banks, W. A. Brain-immune communication pathways. Brain Behav. Immun. 21, 727–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. McAllister, A. K. & van de Water, J. Breaking boundaries in neural–immune interactions. Neuron 64, 9–12 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vezzani, A. & Viviani, B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96, 70–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Rostene, W., Kitabgi, P. & Parsadaniantz, S. M. Chemokines: a new class of neuromodulator? Nat. Rev. Neurosci. 8, 895–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Rivest, S. Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 9, 429–439 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117, 145–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cuadros, M. A. & Navascues, J. The origin and differentiation of microglial cells during development. Prog. Neurobiol. 56, 173–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Verney, C., Monier, A., Fallet-Bianco, C. & Gressens, P. Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J. Anat. 217, 436–448 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Schwarz, J., Sholar, P. W. & Bilbo, S. D. Sex differences in microglial colonization of the developing rat brain. J. Neurochem. 120, 948–963 (2012). This is the first report of a sex difference in microglia, showing that males have higher numbers of microglia that are more activated at early stages and that there is a switch to female preponderance around puberty.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lenz, K. M., Nugent, B. M., Haliyur, R. & McCarthy, M. M. Microglia are essential to masculinization of brain and behavior. J. Neurosci. 33, 2761–2772 (2013). This study establishes a functional role for more activated microglia in the developing POA mediating masculinization of synaptic profile and adult copulatory behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hull, E. M. & Dominguez, J. M. Sexual behavior in male rodents. Horm. Behav. 52, 45–55 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Keller, M., Baum, M. J., Brock, O., Brennan, P. A. & Bakker, J. The main and the accessory olfactory systems interact in the control of mate recognition and sexual behavior. Behav. Brain Res. 200, 268–276 (2009).

    Article  PubMed  Google Scholar 

  46. Amateau, S. K., Alt, J. J., Stamps, C. L. & McCarthy, M. M. Brain estradiol content in newborn rats: sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon. Endocrinology 145, 2906–2917 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Amateau, S. K. & McCarthy, M. M. A novel mechanism of dendritic spine plasticity involving estradiol induction of prostglandin-E2. J. Neurosci. 22, 8586–8596 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amateau, S. K. & McCarthy, M. M. Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior. Nat. Neurosci. 7, 643–650 (2004). This study identifies a prostaglandin as both necessary and sufficient for masculinizing the synaptic profile of POA neurons and adult copulatory behaviour.

    Article  CAS  PubMed  Google Scholar 

  49. Wright, C. L., Burks, S. R. & McCarthy, M. M. Identification of prostaglandin E2 receptors mediating perinatal masculinization of adult sex behavior and neuroanatomical correlates. Dev. Neurobiol. 68, 1406–1419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wright, C. L. & McCarthy, M. M. Prostaglandin E2-induced masculinization of brain and behavior requires protein kinase A, AMPA/kainate, and metabotropic glutamate receptor signaling. J. Neurosci. 29, 13274–13282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lenz, K. M., Wright, C. L., Martin, R. C. & McCarthy, M. M. Prostaglandin E regulates AMPA receptor phosphorylation and promotes membrane insertion in preoptic area neurons and glia during sexual differentiation. PLoS ONE 6, e18500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. VanRyzin, J. W., Yu, S. J., Perez-Pouchoulen, M. & McCarthy, M. M. Temporary depletion of microglia during the early postnatal period induces lasting sex-dependent and sex-independent effects on behavior in rats. eNeuro http://dx.doi.org/10.1523/ENEURO.0297-16.2016 (2016).

  53. Nelson, L. H. & Lenz, K. M. Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats. Behav. Brain Res. 316, 279–293 (2017).

    Article  PubMed  Google Scholar 

  54. Waters, E. M. & Simerly, R. B. Estrogen induces caspase-dependent cell death during hypothalamic development. J. Neurosci. 29, 9714–9718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krishnan, S., Intlekofer, K. A., Aggison, L. K. & Petersen, S. L. Central role of TRAF-interacting protein in a new model of brain sexual differentiation. Proc. Natl Acad. Sci. USA 106, 16692–16697 (2009). This study shows that the higher cell death in the developing male AVPV is mediated by the suppression of the TNF receptor-associated cell survival pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Petersen, S. L., Krishnan, S., Aggison, L. K., Intlekofer, K. A. & Moura, P. J. Sexual differentiation of the gonadotropin surge release mechanism: a new role for the canonical NfκB signaling pathway. Front. Neuroendocrinol. 33, 36–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Radjavi, A., Smirnov, I. & Kipnis, J. Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain Behav. Immun. 35, 58–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Filiano, A. J. et al. Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rilett, K. C. et al. Loss of T cells influences sex differences in behavior and brain structure. Brain Behav. Immun. 46, 249–260 (2015). In this study, null mutations in T-cell receptors both reveal and eliminate sex differences in brain and behaviour in mice.

    Article  CAS  PubMed  Google Scholar 

  60. del Abril, A., Segovia, S. & Guillamon, A. The bed nucleus of the stria terminalis in the rat: regional sex differences controlled by gonadal steroids early after birth. Dev. Brain Res. 32, 295–300 (1987).

    Article  Google Scholar 

  61. Okayama, Y. & Kawakami, T. Development, migration, and survival of mast cells. Immunol. Res. 34, 97–115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Silver, R. & Curley, J. P. Mast cells on the mind: new insights and opportunities. Trends Neurosci. 36, 513–521 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Khalil, M. H., Silverman, A. J. & Silver, R. Mast cells in the rat brain synthesize gonadotropin-releasing hormone. J. Neurobiol. 56, 113–124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kriegsfeld, L. J. et al. Brain mast cells are influenced by chemosensory cues associated with estrus induction in female prairie voles (Microtus ochrogaster). Horm. Behav. 44, 377–384 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mackey, E. et al. Sexual dimorphism in the mast cell transcriptome and the pathophysiological responses to immunological and psychological stress. Biol. Sex Differ. 7, 60 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sweatt, J. D. The emerging field of neuroepigenetics. Neuron 80, 624–632 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Reardon, P. K. et al. An allometric analysis of sex and sex chromosome dosage effects on subcortical anatomy in humans. J. Neurosci. 36, 2438–2448 (2016). This study reveals that sex differences in the size of two subcortical structures are further modified by sex chromosome aneuploidies in both men and women.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Torchia, J., Glass, C. & Rosenfeld, M. G. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10, 373–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Klinge, C. M. Estrogen receptor interaction with co-activators and co-repressors. Steroids 65, 227–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. De Vries, G. J. et al. Sexual differentiation of vasopressin innervation of the brain: cell death versus phenotypic differentiation. Endocrinology 149, 4632–4637 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Z. & De Vries, G. J. Androgen and estrogen effects on vasopressin messenger RNA expression in the medial amygdaloid nucleus in male and female rats. J. Neuroendocrinol. 7, 827–831 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Forbes-Lorman, R. M., Rautio, J. J., Kurian, J. R., Auger, A. P. & Auger, C. J. Neonatal MeCP2 is important for the organization of sex differences in vasopressin expression. Epigenetics 7, 230–238 (2012). In this study, a transient reduction in MeCP2 early in life permanently removed the sex difference in medial amygdala vasopressin expression by reducing it in males to female levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Argue, K. J. & McCarthy, M. M. Characterization of juvenile play in rats: importance of sex of self and sex of partner. Biol. Sex Differ. 6, 16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kurian, J. R., Olesen, K. M. & Auger, A. P. Sex differences in epigenetic regulation of the estrogen receptor-alpha promoter within the developing preoptic area. Endocrinology 151, 2297–2305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schwarz, J. M., Nugent, B. M. & McCarthy, M. M. Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span. Endocrinology 151, 4871–4881 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nugent, B. M. & McCarthy, M. M. Epigenetic underpinnings of developmental sex differences in the brain. Neuroendocrinology 93, 150–158 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Nugent, B. M., Schwarz, J. M. & McCarthy, M. M. Hormonally mediated epigenetic changes to steroid receptors in the developing brain: implications for sexual differentiation. Horm. Behav. 59, 338–344 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ghahramani, N. M. et al. The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biol. Sex Differ. 5, 8 (2014). In this study, the short-term effects of neonatal hormone treatment were modest, but the number of genes with altered methylation increased by 20-fold in adulthood.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Nugent, B. M. et al. Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci. 18, 690–697 (2015). This study demonstrates that higher levels of DNA methylation in the POA of females repress the gene expression programme that is required for normal masculinization, an effect that can be reversed by hormone treatment and is dependent on DNMT activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Matsuda, K. I. et al. Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior. Endocrinology 152, 2760–2767 (2011). This study shows that inhibition of HDAC2 and HDAC4 early in development prevents normal male sex behaviour in adulthood, perhaps in part by modifying sex-specific patterns of acetylation of oestrogen receptor-α and aromatase promoter regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Murray, E. K., Hien, A., de Vries, G. J. & Forger, N. G. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology 150, 4241–4247 (2009). In this study, treatment with the HDAC inhibitor valproic acid prevented the increased cell survival that normally occurs in males resulting in a BNST volume similar to that of females.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Berger, S. L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Shen, E. Y. et al. Epigenetics and sex differences in the brain: a genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice. Exp. Neurol. 268, 21–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Arnold, A. P. & Lusis, A. J. Understanding the sexome: measuring and reporting sex differences in gene systems. Endocrinology 153, 2551–2555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bianchi, I., Lleo, A., Gershwin, M. E. & Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun. 38, J187–J192 (2012).

    CAS  PubMed  Google Scholar 

  86. Schwarz, J. M., Hutchinson, M. R. & Bilbo, S. D. Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. J. Neurosci. 31, 17835–17847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators. Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill. Summ. 63, 1–21 (2014).

  88. Halladay, A. K. et al. Sex and gender differences in autism spectrum disorder: summarizing evidence gaps and identifying emerging areas of priority. Mol. Autism 6, 36 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Werling, D. M. & Geschwind, D. H. Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 26, 146–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kosidou, K. et al. Maternal polycystic ovary syndrome and the risk of autism spectrum disorders in the offspring: a population-based nationwide study in Sweden. Mol. Psychiatry 21, 1441–1448 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Ingudomnukul, E., Baron-Cohen, S., Wheelwright, S. & Knickmeyer, R. Elevated rates of testosterone-related disorders in women with autism spectrum conditions. Horm. Behav. 51, 597–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Baron-Cohen, S. et al. Elevated fetal steroidogenic activity in autism. Mol. Psychiatry 20, 369–376 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Windham, G. C., Lyall, K., Anderson, M. & Kharrazi, M. Autism spectrum disorder risk in relation to maternal mid-pregnancy serum hormone and protein markers from prenatal screening in California. J. Autism Dev. Disord. 46, 478–488 (2016).

    Article  PubMed  Google Scholar 

  94. Baron-Cohen, S. The extreme male brain theory of autism. Trends Cogn. Sci. 6, 248–254 (2002).

    Article  PubMed  Google Scholar 

  95. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gupta, S. et al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 5, 5748 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Werling, D. M., Parikshak, N. N. & Geschwind, D. H. Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat. Commun. 7, 10717 (2016). Re-analyses of existing transcriptomic data sets reveal sex differences in the fetal brain, including an increase in microglia-associated and activated astrocyte-associated genes in males. The same pattern was observed in adult males with ASD compared to neurotypic males.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aleman, A., Kahn, R. S. & Selten, J. P. Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch. Gen. Psychiatry 60, 565–571 (2003).

    Article  PubMed  Google Scholar 

  99. Castle, D. J. & Murray, R. M. The neurodevelopmental basis of sex differences in schizophrenia. Psychol. Med. 21, 565–575 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Goldstein, J. M. Sex, hormones and affective arousal circuitry dysfunction in schizophrenia. Horm. Behav. 50, 612–622 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Goldstein, J. M. et al. Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch. Gen. Psychiatry 59, 154–164 (2002).

    Article  PubMed  Google Scholar 

  102. Moffitt, T. E. & Caspi, A. Childhood predictors differentiate life-course persistent and adolescence-limited antisocial pathways among males and females. Dev. Psychopathol. 13, 355–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Craig, A., Hancock, K., Tran, Y., Craig, M. & Peters, K. Epidemiology of stuttering in the community across the entire life span. J. Speech Lang. Hear. Res. 45, 1097–1105 (2002).

    Article  PubMed  Google Scholar 

  104. Rutter, M. et al. Sex differences in developmental reading disability: new findings from 4 epidemiological studies. JAMA 291, 2007–2012 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Quinn, J. M. & Wagner, R. K. Gender differences in reading impairment and in the identification of impaired readers: results from a large-scale study of at-risk readers. J. Learn. Disabil. 48, 433–445 (2015).

    Article  PubMed  Google Scholar 

  106. Wang, H. S. & Kuo, M. F. Tourette's syndrome in Taiwan: an epidemiological study of tic disorders in an elementary school at Taipei County. Brain Dev. 25 (Suppl. 1), S29–S31 (2003).

    Article  PubMed  Google Scholar 

  107. Biederman, J. et al. Influence of gender on attention deficit hyperactivity disorder in children referred to a psychiatric clinic. Am. J. Psychiatry 159, 36–42 (2002).

    Article  PubMed  Google Scholar 

  108. Gershon, J. A meta-analytic review of gender differences in ADHD. J. Atten. Disord. 5, 143–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Dirlikov, B. et al. Distinct frontal lobe morphology in girls and boys with ADHD. Neuroimage Clin. 7, 222–229 (2015).

    Article  PubMed  Google Scholar 

  110. Jacobson, L. A. et al. Sex-based dissociation of white matter microstructure in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 54, 938–946 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Biederman, J. et al. Sexually dimorphic effects of four genes (COMT, SLC6A2, MAOA, SLC6A4) in genetic associations of ADHD: a preliminary study. Am. J. Med. Genet B Neuropsychiatr. Genet. 147B, 1511–1518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Berletch, J. B., Yang, F., Xu, J., Carrel, L. & Disteche, C. M. Genes that escape from X inactivation. Hum. Genet. 130, 237–245 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Simerly, R. B. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu. Rev. Neurosci. 25, 507–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Xu, J., Deng, X. & Disteche, C. M. Sex-specific expression of the X-linked histone demethylase gene Jarid1c in brain. PLoS ONE 3, e2553 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Xu, J., Deng, X., Watkins, R. & Disteche, C. M. Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J. Neurosci. 28, 4521–4527 (2008). This study shows that sex chromosome paralogue genes that escape X inactivation are differentially expressed in males and females in a brain region-specific manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gorski, R. A., Gordon, J. H., Shryne, J. E. & Southam, A. M. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res. 148, 333–346 (1978).

    Article  CAS  PubMed  Google Scholar 

  118. Matsumoto, A. & Arai, Y. Sex difference in volume of the ventromedial nucleus of the hypothalamus in the rat. Endocrinol. Jpn. 30, 227–280 (1983).

    Article  Google Scholar 

  119. Reid, S. N. M. & Juraska, J. M. Sex differences in the neuron number in binocular area of rat visual cortex. J. Comp. Neurol. 321, 448–455 (1992).

    Article  CAS  PubMed  Google Scholar 

  120. Mizukami, S., Nishizuka, M. & Arai, Y. Sexual difference in nuclear volume and its ontogeny in the rat amygdala. Exp. Neurol. 79, 569–575 (1983).

    Article  CAS  PubMed  Google Scholar 

  121. Van Eden, C. G., Uylings, H. B. & Van Pelt, J. Sex-difference and left-right asymmetries in the prefrontal cortex during postnatal development in the rat. Brain Res. 314, 146–153 (1984).

    Article  CAS  PubMed  Google Scholar 

  122. Davis, E. C., Shryne, J. E. & Gorski, R. A. Structural sexual dimorphisms in the anteroventral periventricular nucleus of the rat hypothalamus are sensitive to gonadal steroids perinatally, but develop peripubertally. Neuroendocrinology 63, 142–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Guillamon, A., de Blas, M. R. & Segovia, S. Effects of sex steroids on the development of the locus coeruleus in the rat. Brain Res. 468, 306–310 (1988).

    Article  CAS  PubMed  Google Scholar 

  124. Cooke, B. M., Tabibnia, G. & Breedlove, S. M. A brain sexual dimorphism controlled by adult circulating androgens. Proc. Natl Acad. Sci. USA 96, 7538–7540 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. De Vries, G. J., Buds, M. R. & Swaab, D. F. Ontogeny of vassopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain — presence of a sex difference in the lateral septum. Brain Res. 218, 67–78 (1981).

    Article  CAS  PubMed  Google Scholar 

  126. Simerly, R. B., Swanson, L. W. & Gorski, R. A. Reversal of the sexually dimorphic distribution of serotonin-immunoreactive fibers in the medial preoptic nucleus by treatment with perinatal androgen. Brain Res. 340, 91–98 (1985).

    Article  CAS  PubMed  Google Scholar 

  127. Miller, M. A., Vician, L., Clifton, D. K. & Dorsa, D. M. Sex differences in vassopressin neurons in the bed nucleus of the stria terminalis by in situ hybridization. Peptides 10, 615–619 (1989).

    Article  CAS  PubMed  Google Scholar 

  128. Clarkson, J. & Herbison, A. E. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147, 5817–5825 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Raisman, G. & Field, P. M. Sexual dimorphism in the preoptic area of the rat. Science 173, 731–733 (1971).

    Article  CAS  PubMed  Google Scholar 

  130. Raisman, G. & Field, P. M. Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen. Brain Res. 54, 1–29 (1973).

    Article  CAS  PubMed  Google Scholar 

  131. Gould, E., Westlind-Danielsson, A., Frankfurt, M. & McEwen, B. S. Sex differences and thyroid hormone sensitivity of hippocampal pyramidal neurons. J. Neurosci. 10, 996–1003 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Matsumoto, A. & Arai, Y. Sexual dimorphism in 'wiring pattern' in the hypothalamic arcuate nucleus and its modification by neonatal hormonal environment. Brain Res. 19, 238–242 (1980).

    Article  Google Scholar 

  133. Matsumoto, A. & Arai, Y. Male-female differences in synaptic organization of the ventromedial nucleus of the hypothalamus in the rat. Neuroendocrinolgy 42, 232–236 (1986).

    Article  CAS  Google Scholar 

  134. Mong, J. A., Glaser, E. & McCarthy, M. M. Gonadal steroids promote glial differentiation and alter neuronal morphology in the developing hypothalamus in a regionally specific manner. J. Neurosci. 19, 1464–1472 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shors, T. J., Chua, C. & Falduto, J. Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J. Neurosci. 21, 6292–6297 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Galea, L. A. M. et al. Sex differences in dendrtic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 81, 689–697 (1997).

    CAS  PubMed  Google Scholar 

  137. Kolb, B. & Stewart, J. Sex-related differences in dendritic branching of cells in prefrontal cortex of rats. J. Neuroendocrinol. 3, 95–99 (1991).

    Article  CAS  PubMed  Google Scholar 

  138. Schwarz, J. M., Liang, S.-L., Thompson, S. M. & McCarthy, M. M. Estradiol induces hypothalamic dendritic spines by enhancing glutamate release: a mechanism for organizational sex differences. Neuron 58, 584–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Juraska, J. M., Fitch, J. M., Henderson, C. & Rivers, N. Sex differences in the dendritic branching of dentate granule cells following differential experience. Brain Res. 29, 73–80 (1985).

    Article  Google Scholar 

  140. Verhovshek, T., Buckley, K. E., Sergent, M. A. & Sengelaub, D. R. Testosterone metabolites differentially maintain adult morphology in a sexually dimorphic neuromuscular system. Dev. Neurobiol. 70, 206–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Han, T. M. & De Vries, G. J. Organizational effects of testosterone, estradiol, and dihydrotestosterone on vasopressin mRNA expression in the bed nucleus of the stria terminalis. J. Neurobiol. 54, 502–510 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Shah, N. M. et al. Visualizing sexual dimorphism in the brain. Neuron 43, 313–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Yokosuka, M., Okamura, H. & Hayashi, S. Postnatal development and sex difference in neurons containing estrogen receptor-alpha immunoreactivity in the preoptic brain, the diencephalon, and the amygdala in the rat. J. Comp. Neurol. 389, 81–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Kauffman, A. S. et al. Sexual differentiation of Kiss1 expression in the brain of the rat. Endocrinology 148, 1774–1783 (2006).

    Article  CAS  Google Scholar 

  145. Carlsson, M., Svensson, K., Eriksson, E. & Carlsson, A. Rat brain serotonin: biochemical and functional evidence for a sex difference. J. Neural Transm. 63, 297–313 (1985).

    Article  CAS  PubMed  Google Scholar 

  146. Roselli, C. E. & Resko, J. A. Aromatase activity in the rat brain: hormonal regulation and sex differences. J. Steroid Biochem. Mol. Biol. 44, 499–508 (1993).

    Article  CAS  PubMed  Google Scholar 

  147. Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013). This study demonstrates that progesterone receptor-expressing neurons subserve distinct but related roles in males and females.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Quadros, P. S., Pfau, J. L., Goldstein, A. Y., De Vries, G. J. & Wagner, C. K. Sex differences in progesterone receptor expression: a potential mechanism for estradiol-mediated sexual differentiation. Endocrinology 143, 3727–3739 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Garcia-Segura, L. M. et al. The distribution of glial fibrillary acidic protein in the adult rat brain is influenced by the neonatal levels of sex steroids. Brain Res. 456, 357–363 (1988).

    Article  CAS  PubMed  Google Scholar 

  150. Johnson, R. T., Breedlove, S. M. & Jordan, C. L. Sex differences and laterality in astrocyte number and complexity in the adult rat medial amygdala. J. Comp. Neurol. 511, 599–609 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tobet, S. A. & Fox, T. O. Sex- and hormone-dependent antigen immunoreactivity in developing rat hypothalamus. Proc. Natl Acad. Sci. USA 86, 382–386 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Marin-Husstega, M., Muggironi, M., Raban, D., Skoff, R. P. & Casacia-Bonnefil, P. Oligodendrocyte progenitor proliferation and maturation is differentially regulated by male and female sex steroid hormones. Dev. Neurosci. 26, 245–254 (2004).

    Article  CAS  Google Scholar 

  153. Pfau, D. R., Hobbs, N. J., Breedlove, S. M. & Jordan, C. L. Sex and laterality differences in medial amygdala neurons and astrocytes of adult mice. J. Comp. Neurol. 524, 2492–2502 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Nunez, J. L. & McCarthy, M. M. Evidence for an extended duration of GABA-mediated excitation in the developing male versus female hippocampus. Dev. Neurobiol. 67, 1879–1890 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Diaz, S. et al. Sex differences in the cannabinoid modulation of appetite, body temperature and neurotransmission at POMC synapses. Neuroendocrinology 89, 424–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Becker, J. B. & Beer, M. E. The influence of estrogen on nigrostriatal dopamine activity: behavioral and neurochemical evidence for both pre- and postsynaptic components. Behav. Brain Res. 19, 27–33 (1986).

    Article  CAS  PubMed  Google Scholar 

  157. Zhang, J.-M., Konkle, A. T. M., Zup, S. L. & McCarthy, M. M. Impact of sex and hormones on new cells in the developing rat hippocampus: a novel source of sex dimorphism? Eur. J. Neurosci. 27, 791–800 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bowers, J. M., Waddell, J. & McCarthy, M. M. A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol. Sex Differ. 1, 8 (2010). This is the first report of a sex difference in cell genesis and its modulation by endogenous possibly locally synthesized oestradiol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Krebs-Kraft, D. L., Hill, M. N., Hillard, C. J. & McCarthy, M. M. Sex difference in cell proliferation in developing rat amygdala mediated by endocannabinoids has implications for social behavior. Proc. Natl Acad. Sci. USA 107, 20535–20540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pinos, H. et al. The development of sex differences in the locus coeruleus of the rat. Brain Res. Bull. 56, 73–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Ahmed, E. I. et al. Pubertal hormones modulate the addition of new cells to sexually dimorphic brain regions. Nat. Neurosci. 11, 995–997 (2008). This study shows that volumetric sex differences in three brain regions seem to be actively maintained by the addition of new cells during the peripubertal period.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gillberg, C., Cederlund, M., Lamberg, K. & Zeijlon, L. Brief report: “the autism epidemic”. The registered prevalence of autism in a Swedish urban area. J. Autism Dev. Disord. 36, 429–435 (2006).

    Article  PubMed  Google Scholar 

  163. Fombonne, E. Epidemiology of pervasive developmental disorders. Pediatr. Res. 65, 591–598 (2009).

    Article  PubMed  Google Scholar 

  164. Loeber, R., Burke, J. D., Lahey, B. B., Winters, A. & Zera, M. Oppositional defiant and conduct disorder: a review of the past 10 years, part I. J. Am. Acad. Child Adolesc. Psychiatry 39, 1468–1484 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Trepat, E. & Ezpeleta, L. Sex differences in oppositional defiant disorder. Psicothema 23, 666–671 (2011).

    PubMed  Google Scholar 

  166. Gaub, M. & Carlson, C. L. Gender differences in ADHD: a meta-analysis and critical review. J. Am. Acad. Child Adolesc. Psychiatry 36, 1036–1045 (1997).

    Article  CAS  PubMed  Google Scholar 

  167. Arcia, E. & Conners, C. K. Gender differences in ADHD? J. Dev. Behav. Pediatr. 19, 77–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  168. Bergen, S. E. et al. Genetic modifiers and subtypes in schizophrenia: investigations of age at onset, severity, sex and family history. Schizophr. Res. 154, 48–53 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Walder, D. J. et al. Sex differences in language dysfunction in schizophrenia. Am. J. Psychiatry 163, 470–477 (2006).

    Article  PubMed  Google Scholar 

  170. Castle, D. J., Abel, K., Takei, N. & Murray, R. M. Gender differences in schizophrenia: hormonal effect or subtypes. Schizophr. Bull. 21, 1–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  171. Cyranowski, J. M., Frank, E., Young, E. & Shear, M. K. Adolescent onset of the gender difference in lifetime rates of major depression: a theoretical model. Arch. Gen. Psychiatry 57, 21–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Weissman, M. M. et al. Sex differences in rates of depression: cross-national perspectives. J. Affect. Disord. 29, 77–84 (1993).

    Article  CAS  PubMed  Google Scholar 

  173. Weissman, M. M. & Klerman, G. L. Sex differences and the epidemiology of depression. Arch. Gen. Psychiatry 34, 98–111 (1977).

    Article  CAS  PubMed  Google Scholar 

  174. Alonso, J. et al. Prevalence of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatr. Scand. Suppl. 109, 21–27 (2004).

    Google Scholar 

  175. Kessler, R. C. Epidemiology of women and depression. J. Affect. Disord. 74, 5–13 (2003).

    Article  PubMed  Google Scholar 

  176. Robb, J. C., Young, L. T., Cooke, R. G. & Joffe, R. T. Gender differences in patients with bipolar disorder influence outcome in the medical outcomes survey (SF-20) subscale scores. J. Affect. Disord. 49, 189–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  177. Leibenluft, E. Women with bipolar illness: clinical and research issues. Am. J. Psychiatry 153, 163–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  178. Arnold, L. M. Gender differences in bipolar disorder. Psychiatr. Clin. North Am. 26, 595–620 (2003).

    Article  PubMed  Google Scholar 

  179. Dao, D. T. et al. Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol. Psychiatry 68, 801–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. McLean, C. P., Asnaani, A., Litz, B. T. & Hofmann, S. G. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J. Psychiatr. Res. 45, 1027–1035 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kessler, R. C. et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch. Gen. Psychiatry 51, 8–19 (1994).

    Article  CAS  PubMed  Google Scholar 

  182. Breslau, N., Schultz, L. & Peterson, E. Sex differences in depression: a role for preexisting anxiety. Psychiatry Res. 58, 1–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  183. Bogetto, F., Venturello, S., Albert, U., Maina, G. & Ravizza, L. Gender-related clinical differences in obsessive-compulsive disorder. Eur. Psychiatry 14, 434–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Kessler, R. C., Sonnega, A., Bromet, E., Hughes, M. & Nelson, C. B. Posttraumatic stress disorder in the National Comorbidity Survey. Arch. Gen. Psychiatry 52, 1048–1060 (1995).

    Article  CAS  PubMed  Google Scholar 

  185. Breslau, N., Davis, G. C., Andreski, P., Peterson, E. L. & Schultz, L. R. Sex differences in posttraumatic stress disorder. Arch. Gen. Psychiatry 54, 1044–1048 (1997).

    Article  CAS  PubMed  Google Scholar 

  186. Hudson, J. I., Hiripi, E., Pope, H. G. Jr & Kessler, R. C. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol. Psychiatry 61, 348–358 (2007).

    Article  PubMed  Google Scholar 

  187. Raevuori, A., Keski-Rahkonen, A. & Hoek, H. W. A review of eating disorders in males. Curr. Opin. Psychiatry 27, 426–430 (2014).

    Article  PubMed  Google Scholar 

  188. Bulik, C. M. et al. Prevalence, heritability, and prospective risk factors for anorexia nervosa. Arch. Gen. Psychiatry 63, 305–312 (2006).

    Article  PubMed  Google Scholar 

  189. Woodside, D. B. et al. Comparisons of men with full or partial eating disorders, men without eating disorders, and women with eating disorders in the community. Am. J. Psychiatry 158, 570–574 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Ceylan-Isik, A. F., McBride, S. M. & Ren, J. Sex difference in alcoholism: who is at a greater risk for development of alcoholic complication? Life Sci. 87, 133–138 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lipton, R. B., Stewart, W. F., Diamond, S., Diamond, M. L. & Reed, M. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache 41, 646–657 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Buse, D. C. et al. Sex differences in the prevalence, symptoms, and associated features of migraine, probable migraine and other severe headache: results of the American Migraine Prevalence and Prevention (AMPP) Study. Headache 53, 1278–1299 (2013).

    Article  PubMed  Google Scholar 

  193. Petrea, R. E. et al. Gender differences in stroke incidence and poststroke disability in the Framingham Heart Study. Stroke 40, 1032–1037 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Persky, R. W., Turtzo, L. C. & McCullough, L. D. Stroke in women: disparities and outcomes. Curr. Cardiol. Rep. 12, 6–13 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Orton, S. M. et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 5, 932–936 (2006).

    Article  PubMed  Google Scholar 

  196. Whitacre, C. C. Sex differences in autoimmune disease. Nat. Immunol. 2, 777–780 (2001).

    Article  CAS  PubMed  Google Scholar 

  197. Beeson, P. B. Age and sex associations of 40 autoimmune diseases. Am. J. Med. 96, 457–462 (1994).

    Article  CAS  PubMed  Google Scholar 

  198. Fratiglioni, L. et al. Very old women at highest risk of dementia and Alzheimer's disease: incidence data from the Kungsholmen Project, Stockholm. Neurology 48, 132–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  199. Ott, A., Breteler, M. M., van Harskamp, F., Stijnen, T. & Hofman, A. Incidence and risk of dementia. The Rotterdam Study. Am. J. Epidemiol. 147, 574–580 (1998).

    Article  CAS  PubMed  Google Scholar 

  200. Di Carlo, A. et al. Incidence of dementia, Alzheimer's disease, and vascular dementia in Italy. The ILSA Study. J. Am. Geriatr. Soc. 50, 41–48 (2002).

    Article  PubMed  Google Scholar 

  201. Barnes, L. L. et al. Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch. Gen. Psychiatry 62, 685–692 (2005).

    Article  PubMed  Google Scholar 

  202. Haaxma, C. A. et al. Gender differences in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 78, 819–824 (2007).

    Article  PubMed  Google Scholar 

  203. McCombe, P. A. & Henderson, R. D. Effects of gender in amyotrophic lateral sclerosis. Gend. Med. 7, 557–570 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.M.M. is supported by US National Institutes of Health (NIH) grant R01MH052716-19, R01DA039062 and R01MH091424. K.M.L. is supported by NIH grants F32NS076327 and R21MH105826, and NARSAD Young Investigator Award 2382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. McCarthy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Functional MRI

The detection of changes in regional brain activity through their effects on blood flow and blood oxygenation that in turn affect the brightness of magnetic resonance images.

Diffusion tensor imaging

An MRI technique that provides a three-dimensional image of water diffusion in the brain. As water diffuses more readily along the axis of myelinated nerve fibre tracts, this method can be used to obtain a non-invasive estimate of anatomical connectivity between brain areas.

Connectome

A comprehensive map of neural connections within the nervous system of an organism.

Steroid hormone

A signalling molecule that is synthesized from cholesterol and is released into the circulation from endocrine glands including the gonads and adrenals. It binds to nuclear transcription factor receptors and can directly and indirectly modify gene expression.

Early life programming

The phenomenon whereby events during development, such as stress, altered nutrition or endogenous hormone exposure, exert enduring influences on the nervous system in anticipation of the adult environment and experiences.

Critical period

A developmental window during which specific cellular events must occur or will be forever precluded. Sexual differentiation of the brain mediated by steroid hormones occurs during a perinatal critical period in the rodent and prenatally in humans.

Hormone response elements

Sequences of DNA in promoter regions that are recognized and bound to by steroid hormone receptors after binding of hormone, thereby promoting transcription.

Humoral signalling

Signalling molecules released into the blood stream that then act at a distance, such as steroid hormones.

Cytokine

Originally defined as an immune system protein that modifies biological responses; cytokines are now known to be released by most cells and are important in regulating intercellular communication, cell function and cell survival.

Immune surveillance

The hypothesized process by which the immune system constantly monitors the body for both invading pathogens and aberrant cell pathology, such as that seen in cancer.

Neuromodulators

Endogenous chemical substances that change the intrinsic properties of a neuron and the dynamics and strength of neurotransmission. Neuromodulators can modify neuronal responses to synaptic inputs on potentially long timescales.

Neurohormones

Steroid hormones that are further modified in the brain or synthesized de novo from cholesterol in the brain and are thus distinguished from those synthesized in the endocrine glands. Other neurohormones are peptides synthesized in the brain and released into the periphery such as oxytocin and vasopressin.

T cells

Lymphocytes produced by the thymus gland that actively participate in the immune response.

Mast cells

Multigranular cells that function as stores for several key inflammatory and/or pain mediators (including nerve growth factor, tumour necrosis factor, chemokines and histamine) and that originate in bone marrow but have a resident population in the brain.

Epigenetic marks

Modifications to the genome that do not change the nucleotide sequence but have an impact on gene regulation. Methylation groups added to cytosine nucleotides or histones on the chromatin, along with other chemical groups, are examples of epigenetic marks.

Chemokines

A subfamily of inflammatory molecules that were initially described as regulators of the chemotaxis of inflammatory cells but that also have important roles in other processes, such as cell growth and differentiation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, M., Nugent, B. & Lenz, K. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nat Rev Neurosci 18, 471–484 (2017). https://doi.org/10.1038/nrn.2017.61

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.61

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing