Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Population extinctions can increase metapopulation persistence

Abstract

Metapopulations persist when local populations are rapidly recolonized following local extinctions. Such persistence requires asynchrony; simultaneous crashes of all populations would leave no source of recolonization. We show theoretically and experimentally that catastrophic population extinctions themselves can promote metapopulation persistence, by preventing spatial synchrony and thus enhancing recolonization. We refer to this behaviour as the ‘spatial hydra effect’: as with the mythical hydra that grows two new heads when one is removed, extinctions can increase recolonization. The effect is robust, occurring in a wide range of theoretical models exhibiting cyclic or quasi-cyclic population dynamics. In a laboratory microcosm experiment using cyclic protist predator–prey metapopulations, catastrophic perturbations wiping out populations but leaving the patch otherwise unchanged increased metapopulation persistence when high dispersal rates would otherwise have led to spatially synchronous extinctions of all populations. We discuss several candidate examples of the spatial hydra effect in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of the dispersal rate and catastrophic local extinction rate on the mean predator metapopulation persistence time.
Fig. 2: Effects of the dispersal rate and catastrophic extinction rate on spatial synchrony.
Fig. 3: Metapopulation persistence time versus spatial synchrony.
Fig. 4: Metapopulations that spend more time at high occupancy collapse to extinction more rapidly when they do collapse.

Similar content being viewed by others

References

  1. Husband, B. C. & Barrett, S. C. H. Spatial and temporal variation in population size of Eichhornia paniculata in ephemeral habitats: implications for metapopulation dynamics. J. Anim. Ecol. 86, 1021–1031 (1998).

    Article  Google Scholar 

  2. Pajunen, V. I. & Pajunen, I. Long-term dynamics in rock pool Daphnia metapopulations. Ecography 26, 731–738 (2003).

    Article  Google Scholar 

  3. Biedermann, R. Modelling the spatial dynamics and persistence of the leaf beetle Gonioctena olivacea in dynamic habitats. Oikos 107, 645–653 (2004).

    Article  Google Scholar 

  4. Schöps, K. Local and regional dynamics of a specialist herbivore: overexploitation of a patchily distributed host plant. Oecologia 132, 256–263 (2002).

    Article  PubMed  Google Scholar 

  5. Hanski, I. A. Evo-evolutionary spatial dynamics in the Glanville fritillary butterfly. Proc. Natl Acad. Sci. USA 108, 14397–14404 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carlson, A. & Edenhamm, P. Extinction dynamics and the regional persistence of a tree frog metapopulation. Proc. R. Soc. Lond. B 267, 1311–1313 (2000).

    Article  CAS  Google Scholar 

  7. Pencykowski, R. M., Walker, E., Soubeyrand, S. & Laine, A.-L. Linking winter conditions to regional disease dynamics in a wild plant-pathogen metapopulation. New Phytol. 205, 1142–1152 (2015).

    Article  Google Scholar 

  8. Bahl, J. et al. Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proc. Natl Acad. Sci. USA 108, 19359–19364 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Metcalf, C. J. E. et al. Persistence in epidemic metapopulations: quantifying the rescue effects for measles, mumps, rubella, and whooping cough. PLoS ONE 8, e74696 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ferrari, M. J. et al. The dynamics of measles in sub-Saharan Africa. Nature 451, 679–684 (2008).

    Article  PubMed  CAS  Google Scholar 

  11. Huffaker, C. B. Experimental studies on predation: dispersion factors and predator–prey oscillations. Hilgardia 27, 795–835 (1958).

    Article  Google Scholar 

  12. Dey, S. & Joshi, A. Stability via asynchrony in Drosophila metapopulations with low migration rates. Science 312, 434–436 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Griffen, B. D. & Drake, J. M. Environment, but not migration rate, influences extinction risk in experimental metapopulations. Proc. Biol. Sci. 276, 4363–4371 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vasseur, D. W. & Fox, J. W. Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature 460, 1007–1010 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. Vogwill, T., Fenton, A. & Brockhurst, M. Dispersal and natural enemies interact to drive spatial synchrony and decrease stability in patchy populations. Ecol. Lett. 12, 1194–1200 (2009).

    Article  PubMed  Google Scholar 

  16. Fox, J. W., Vasseur, D. A., Hausch, S. & Roberts, J. Phase locking, the Moran effect, and distance decay of synchrony: experimental tests in a model system. Ecol. Lett. 14, 163–168 (2011).

    Article  PubMed  Google Scholar 

  17. Yaari, G., Ben-Zion, Y., Shnerb, N. M. & Vasseur, D. A. Consistent scaling of persistence time in metapopulations. Ecology 93, 1214–1227 (2012).

    Article  PubMed  Google Scholar 

  18. Harrison, S. & Quinn, J. Correlated environments and the persistence of metapopulations. Oikos 56, 293–298 (1989).

    Article  Google Scholar 

  19. Allen, J. C., Schaffer, W. M. & Rosko, D. Chaos reduces species extinctions by amplifying local population noise. Nature 364, 229–232 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. Heino, M., Kaitala, V., Ranta, E. & Lindstrom, J. Synchronous dynamics and rates of extinction in spatially structured populations. Proc. R. Soc. Lond. B 264, 481–486 (1997).

    Article  Google Scholar 

  21. Palmqvist, E. & Lundberg, P. Population extinctions in correlated environments. Oikos 83, 359–367 (1998).

    Article  Google Scholar 

  22. Ellner, S. P. et al. Habitat structure and population persistence in an experimental community. Nature 412, 538–543 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. Holyoak, M. & Lawler, S. P. Persistence of an extinction-prone predator–prey interaction through metapopulation dynamics. Ecology 77, 1867–1879 (1996).

    Article  Google Scholar 

  24. Rohani, P., Earn, D. J. D. & Grenfell, B. T. Opposite patterns of synchrony in sympatric disease metapopulations. Science 286, 968–971 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. Bjørnstad, O. N. Cycles and synchrony: two historical ‘experiments’ and one experience. J. Anim. Ecol. 69, 869–873 (2000).

    Article  PubMed  Google Scholar 

  26. Blasius, B., Huppert, A. & Stone, L. Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354–359 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. Spatial synchrony in population dynamics. Ann. Rev. Ecol. Evol. Syst. 35, 467–490 (2004).

    Article  Google Scholar 

  28. Bolker, B. M. & Grenfell, B. T. Impact of vaccination on the spatial correlation and persistence of measles dynamics. Proc. Natl Acad. Sci. USA 93, 12648–12653 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Luckinbill, L. S. Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum. Ecology 54, 1320–1327 (1973).

    Article  Google Scholar 

  30. Cooper, J. K., Li, J. & Montagnes, D. J. S. Intermediate fragmentation per se provides stable predator–prey metapopulation dynamics. Ecol. Lett. 15, 856–863 (2012).

    Article  PubMed  Google Scholar 

  31. Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: effects of immigration on extinction. Ecology 58, 445–449 (1977).

    Article  Google Scholar 

  32. Thrall, P. H. & Burdon, J. J. The spatial scale of pathogen dispersal: consequences for disease dynamics and persistence. Evol. Ecol. Res. 1, 681–701 (1999).

    Google Scholar 

  33. Jost, K. & Schöps, K. Persistence and conservation of a consumer–resource metapopulation with local overexploitation of resources. Biol. Conserv. 109, 57–65 (2003).

    Article  Google Scholar 

  34. Keeling, M. J. & Rohani, P. Estimating spatial coupling in epidemiological systems: a mechanistic approach. Ecol. Lett. 5, 20–29 (2002).

    Article  Google Scholar 

  35. Ellner, S. P., Snyder, R. E. & Adler, P. B. How to quantify the temporal storage effect using simulations instead of math. Ecol. Lett. 19, 1333–1342 (2016).

    Article  PubMed  Google Scholar 

  36. Gremer, J. R. & Venable, D. L. Bet hedging in desert winter annual plants: optimal germination strategies in a variable environment. Ecol. Lett. 17, 380–387 (2014).

    Article  PubMed  Google Scholar 

  37. Ives, A. R., Einarsson, Á., Jansen, V. A. A. & Gardarsson, R. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452, 84–87 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Strogatz, S. H. & Stewart, I. Coupled oscillators and biological synchronization. Sci. Am. 269, 102–109 (1993).

    Article  PubMed  CAS  Google Scholar 

  40. Ranta, E., Fowler, M. S. & Kaitala, V. Population synchrony in small-world networks. Proc. R. Soc. Lond. B 275, 435–442 (2008).

    Article  Google Scholar 

  41. Rosenzweig, M. L. & MacArthur, R. H. Graphical representation and stability conditions of predator–prey interactions. Am. Nat. 97, 209–223 (1963).

    Article  Google Scholar 

  42. Harrison, G. W. Comparing predator–prey models to Luckinbill’s experiment with Didinium and Paramecium. Ecology 76, 357–374 (1995).

    Article  Google Scholar 

  43. Pineda-Krch, M. GillespieSSA: implementing the Gillespie stochastic simulation algorithm in R. J. Statistical Software http://doi.org/10.18637/jss.v025.i12 (2008).

  44. Zion, Y. B., Yaari, G. & Shnerb, N. M. Optimizing metapopulation sustainability through a checkerboard strategy. PLoS Comput. Biol. 6, e1000643 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

K. McCann and S. Cobey provided comments on an early draft. This work was supported by the High Performance Computing facilities operated by the Yale Center for Research Computing and its staff. This work was funded by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to J.W.F.

Author information

Authors and Affiliations

Authors

Contributions

J.W.F. conceived and designed the study and analysed the data. M.C. and L.G. collected the data. F.S. and D.V. conducted the model simulations with assistance from J.W.F. J.W.F. and D.V. wrote the paper with assistance from the other authors. In the author list, the authors are ordered by their overall contribution to the paper, starting with the author who contributed the most.

Corresponding author

Correspondence to Jeremy W. Fox.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1,2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fox, J.W., Vasseur, D., Cotroneo, M. et al. Population extinctions can increase metapopulation persistence. Nat Ecol Evol 1, 1271–1278 (2017). https://doi.org/10.1038/s41559-017-0271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0271-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing