Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The merger of transition metal and photocatalysis

Abstract

The merger of transition metal catalysis and photocatalysis, termed metallaphotocatalysis, has recently emerged as a versatile platform for the development of new, highly enabling synthetic methodologies. Photoredox catalysis provides access to reactive radical species under mild conditions from abundant, native functional groups, and, when combined with transition metal catalysis, this feature allows direct coupling of non-traditional nucleophile partners. In addition, photocatalysis can aid fundamental organometallic steps through modulation of the oxidation state of transition metal complexes or through energy-transfer-mediated excitation of intermediate catalytic species. Metallaphotocatalysis provides access to distinct activation modes, which are complementary to those traditionally used in the field of transition metal catalysis, thereby enabling reaction development through entirely new mechanistic paradigms. This Review discusses key advances in the field of metallaphotocatalysis over the past decade and demonstrates how the unique mechanistic features permit challenging, or previously elusive, transformations to be accomplished.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key features of transition metal and photoredox catalysis that provide access to elusive reactivity.
Figure 2: Dual photoredox nickel-catalysed C–C bond formation through oxidative radical generation.
Figure 3: C–H arylation by dual nickel photoredox catalysis.
Figure 4: Cross-electrophile coupling mediated by a silyl radical.
Figure 5: Visible light-enabled Ni-catalysed C–X bond-forming reactions.
Figure 6: Light-enabled C–H functionalization using dual palladium photoredox catalysis.
Figure 7: Visible light-enabled decarboxylative coupling using metallaphotoredox catalysis.
Figure 8: Formation of C–C and C–N bonds using dual copper photoredox catalysis.
Figure 9: Oxyarylation and aminoarylation of alkenes through dual gold photoredox catalysis.
Figure 10: Arylative functionalization mediated by dual gold photoredox catalysis.

References

  1. Ault, A. The Nobel prize in chemistry for 2001. J. Chem. Educ. 79, 572–577 (2002).

    Article  CAS  Google Scholar 

  2. Casey, C. P. 2005 Nobel prize in chemistry. Development of the E-olefin metathesis method in organic synthesis. J. Chem. Educ. 83, 192–195 (2006).

    Article  CAS  Google Scholar 

  3. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Article  CAS  Google Scholar 

  4. Hegedus, L. S. & Söderberg, B. C. G. Transition Metals in the Synthesis of Complex Organic Molecules 3rd edn (Univ. Science Books, 2010).

    Google Scholar 

  5. Ruiz-Castillo, P. & Buchwald, S. L. Application of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsunaga, P. T., Hillhouse, G. L. & Rheingold, A. L. Oxygen-atom transfer from nitrous oxide to a nickelmetallacycle. Synthesis, structure, and reactions of [cyclic] (2,2′-bipyridine)Ni(OCH2CH2CH2CH2). J. Am. Chem. Soc. 115, 2075–2077 (1993).

    Article  CAS  Google Scholar 

  7. Matsunaga, P. T., Mavropoulos, J. C. & Hillhouse, G. L. Oxygen-atom transfer from nitrous oxide (N=N=O) to nickel alkyls. Syntheses and reactions of nickel(II) alkoxides. Polyhedron 14, 175–185 (1995).

    Article  CAS  Google Scholar 

  8. Han, R. & Hillhouse, G. L. Carbon–oxygen reductive-elimination from nickel(II) oxametallacycles and factors that control formation of ether, aldehyde, alcohol, or ester products. J. Am. Chem. Soc. 119, 8135–8136 (1997).

    Article  CAS  Google Scholar 

  9. Camasso, N. M. & Sanford, M. S. Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science 347, 1218–1220 (2013).

    Article  CAS  Google Scholar 

  10. Chan, D., Monaco, K., Wang, R. & Winter, M. New N and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Lett. 39, 2933–2936 (1998).

    Article  CAS  Google Scholar 

  11. Evans, D., Katz, J. & West, T. Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine. Tetrahedron Lett. 39, 2937–2942 (1998).

    Article  CAS  Google Scholar 

  12. Lam, P. et al. New aryl/heteroaryl C–N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett. 39, 2941–2944 (1998).

    Article  CAS  Google Scholar 

  13. Ye, Y., Schimler, S. D., Hanley, P. S. & Sanford, M. S. Cu(OTf)2-mediated fluorination of aryltrifluoroborates with potassium fluoride. J. Am. Chem. Soc. 135, 16292–16295 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, X., Lu, Y., Dai, H.-X. & Yu, J.-Q. Pd(II)-catalyzed hydroxyl-directed C–H activation/C–O cyclization: expedient construction of dihydrobenzofurans. J. Am. Chem. Soc. 132, 12203–12205 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Mei, T.-S., Wang, X. & Yu, J.-Q. Pd(II)-catalyzed amination of C–H bonds using single-electron or two-electron oxidants. J. Am. Chem. Soc. 131, 10806–10807 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Engle, K. M., Mei, T.-S., Wang, X. & Yu, J.-Q. Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew. Chem. Int. Ed. 50, 1478–1491 (2011).

    Article  CAS  Google Scholar 

  17. Hickman, A. J. & Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hickman, A. J. & Sanford, M. S. Catalyst control of site selectivity in the PdII/IV-catalyzed direct arylation of naphthalene. ACS Catal. 1, 170–174 (2011).

    Article  CAS  Google Scholar 

  19. Bitterwolf, T. E. Organometallic photochemistry at the end of its first century. J. Organometal. Chem. 689, 3939–3952 (2004).

    Article  CAS  Google Scholar 

  20. Grätzel, M. Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc. Chem. Res. 14, 376–384 (1981).

    Article  Google Scholar 

  21. Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 22, 163–170 (1989).

    Article  CAS  Google Scholar 

  22. Lowry, M. S. & Bernhard, S. Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications. Chem. Eur. J. 12, 7970–7977 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kalyanasundaram, K. & Grätzel, M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 177, 347–414 (1998).

    Article  CAS  Google Scholar 

  24. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burk, M. J. & Crabtree, R. H. Selective catalytic dehydrogenation of alkanes to alkenes. J. Am. Chem. Soc. 109, 8025–8032 (1987).

    Article  CAS  Google Scholar 

  26. Maguire, J. A., Boese, W. T. & Goldman, A. S. Photochemical dehydrogenation of alkanes catalyzed by trans-carbonylchlorobis(trimethylphosphine)rhodium: aspects of selectivity and mechanism. J. Am. Chem. Soc. 111, 7088–7093 (1989).

    Article  CAS  Google Scholar 

  27. Sakakura, T., Sodeyama, T., Sasaki, K., Wada, K. & Tanaka, M. Carbonylation of hydrocarbons via carbon-hydrogen activation catalyzed by RhCl(CO)(PMe3)2 under irradiation. J. Am. Chem. Soc. 112, 7221–7229 (1990).

    Article  CAS  Google Scholar 

  28. Ishiyama, T., Miyaura, N. & Suzuki, A. Palladium-catalyzed carbonylative cross-coupling reaction of iodoalkanes with 9-alkyl-9-BBN derivatives. A direct and selective synthesis of ketones. Tetrahedron Lett. 47, 6923–6926 (1991).

    Article  Google Scholar 

  29. Creutz, S. E., Lotito, K. J., Fu, G. C. & Peters, J. C. Photoinduced Ullmann C–N coupling: demonstrating the viability of a radical pathway. Science 338, 647–651 (2012). A light-mediated Ullmann coupling that proceeds under exceptionally mild conditions, demonstrating the capacity for metallaphotocatalysis to enable challenging transformations.

    Article  CAS  PubMed  Google Scholar 

  30. Lindsey, J. Copper assisted nucleophilic substitution of aryl halogen. Tetrahedron 40, 1433–1456 (1984).

    Article  Google Scholar 

  31. Sumino, S., Ui, T. & Ryu, I. Synthesis of alkyl aryl ketones by Pd/light induced carbonylative cross-coupling of alkyl iodides and arylboronic acids. Org. Lett. 15, 3142–3145 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kärkäs, M. D., Porco, J. A. Jr & Stephenson, C. R. J. Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem. Rev. 116, 9638–9747 (2016).

    Article  CAS  Google Scholar 

  34. Bach, T. & Hehn, J. P. Photochemical reactions as key steps in natural product synthesis. Angew. Chem. Int. Ed. 50, 1000–1045 (2011).

    Article  CAS  Google Scholar 

  35. Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 108, 1052–1103 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Roth, H. D. The beginnings of organic photochemistry. Angew. Chem. Int. Ed. Engl. 28, 1193–1207 (1989).

    Article  Google Scholar 

  37. Trommsdorff, H. Über Santonin [German]. Ann. Chem. Pharm. 11, 190–207 (1834).

    Article  Google Scholar 

  38. Ciamician, G. & Silber, P. Chemische Lichtwirkungen [German]. Ber. Dtsch. Chem. Ges. 41, 1928–1935 (1908).

    Article  CAS  Google Scholar 

  39. Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Xuan, J. & Xiao, W.-J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 51, 6828–6838 (2012).

    Article  CAS  Google Scholar 

  41. Reckenthäler, M. & Griesbeck, A. G. Photoredox catalysis for organic syntheses. Adv. Synth. Catal. 355, 2727–2744 (2013).

    Article  CAS  Google Scholar 

  42. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10116 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Takeda, H. & Ishitani, O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord. Chem. Rev. 254, 346–354 (2010).

    Article  CAS  Google Scholar 

  46. van Bergen, T. J., Hedstrand, D. M., Kruizinga, W. H. & Kellogg, R. M. Chemistry of dihydropyridine. 9. Hydride transfer from 1,4-dihydropyridine to sp3-hybridized carbon in sulfonium salts and activated halides. Studies with NAD(P)H models. J. Org. Chem. 44, 4953–4962 (1979).

    Article  CAS  Google Scholar 

  47. Pac, C., Ihama, M., Yasuda, M., Miyauchi, Y. & Sakurai, H. Tris(2,2′-bipyridine)ruthenium2+-mediated photoreduction of olefins with 1-benzyl-1,4-dihydronicotinamide: a mechanistic probe for electron-transfer reactions of NAD(P)H-model compounds. J. Am. Chem. Soc. 103, 6495–6497 (1983).

    Article  Google Scholar 

  48. Fukuzumi, S., Koumitsu, S., Hironaka, K. & Tanaka, T. Energetic comparison between photoinduced electron-transfer reactions from NADH model compounds to organic and inorganic oxidants and hydride-transfer reactions for NADH model compounds to p-benzoquinone derivatives. J. Am. Chem. Soc. 109, 305–316 (1987).

    Article  CAS  Google Scholar 

  49. Cano-Yelo, H. & Deronzier, A. Photo-oxidation of some carbinols by the Ru(II) polypyridyl complex-aryl diazonium salt system. Tetrahedron Lett. 25, 5517–5520 (1984).

    Article  CAS  Google Scholar 

  50. Okada, K., Okamoto, K., Morita, N., Okubo, K. & Oda, M. Photosensitized decarboxylative Michael addition through N-(acyloxy)phthalimides via an electron-transfer mechanism. J. Am. Chem. Soc. 113, 9401–9402 (1991).

    Article  CAS  Google Scholar 

  51. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ischay, M. A., Anzovino, M. E., Du, J. & Yoon, T. P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 130, 12886–12887 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Narayanam, J. M. R., Tucker, J. W. & Stephenson, C. R. J. Electron-transfer phtotoredox catalysis: development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 131, 8756–8757 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Arias-Rotondo, D. M. & McCusker, J. M. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Cismesia, M. A. & Yoon, T. P. Characterizing chain processes in visible light photoredox catalysis. Chem. Sci. 6, 5426–5434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hopkinson, M. N., Sahoo, B., Li, J.-L. & Glorius, F. Dual catalysis see the light: combining photoredox with organo-, acid, and transition-metal catalysis. Chem. Eur. J. 20, 3874–3886 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Vila, C. Merging visible-light-photoredox and nickel catalysis. ChemCatChem 7, 1790–1793 (2015).

    Article  CAS  Google Scholar 

  59. Levin, M. D., Kim, S. & Toste, F. D. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2, 293–301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. de Meigere, A. & Diederich, F. (eds) Metal-Catalyzed Cross-Coupling Reactions 2nd edn (Wiley, 2004).

    Book  Google Scholar 

  61. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu, X. Nickel-catalyzed cross coupling of non-activated alkyl halides: a mechanistic perspective. Chem. Sci. 2, 1867–1886 (2011).

    Article  CAS  Google Scholar 

  63. Zuo, Z. & MacMillan, D. W. C. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. J. Am. Chem. Soc. 136, 5257–5260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chu, L., Ohta, C., Zuo, Z. & MacMillan, D. W. C. Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of (±)-Lyrica. J. Am. Chem. Soc. 136, 10886–10889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Noble, A. & MacMillan, D. W. C. Photoredox α-vinylation of α-amino acids and N-aryl amines. J. Am. Chem. Soc. 136, 11602–11605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zuo, Z., Ahneman, D. T., Chu, L., Terrett, J. A. & MacMillan, D. W. C. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014). An early report on nickel metallaphotoredox catalysis, allowing direct cross-coupling of carboxylic acids via a radical decarboxylative activation mode.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zuo, Z. et al. Enantioselective decarboxylative arylation of α-amino acids via the merger of photoredox and nickel catalysis. J. Am. Chem. Soc. 138, 1832–1835 (2015).

    Article  CAS  Google Scholar 

  68. Noble, A., McCarver, S. J. & MacMillan, D. W. C. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc. 137, 624–627 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Johnston, C. P., Smith, R. T., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp3sp3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322–325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chu, L., Lipshultz, J. M. & MacMillan, D. W. C. Merging photoredox and nickel catalysis: the direct synthesis of ketones by the decarboxylative arylation of α-oxo acids. Angew. Chem. Int. Ed. 54, 7929–7933 (2015).

    Article  CAS  Google Scholar 

  72. Le, C. C. & MacMillan, D. W. C. Fragment couplings via CO2 extrusion–recombination: expansion of a classic bond-forming strategy via metallaphotoredox. J. Am. Chem. Soc. 137, 11938–11941 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Shimizu, I., Yamada, T. & Tsuji, J. Palladium-catalyzed rearrangement of allylic esters of acetoacetic acid to give γ, δ-unsaturated methyl ketones. Tetrahedron Lett. 21, 3199–3202 (1980).

    Article  CAS  Google Scholar 

  74. Tsuda, T., Chujo, Y., Nishi, S., Tawara, K. & Saegusa, T. Facile generation of a reactive palladium(II) enolate intermediate by the decarboxylation of palladium(II) β-ketocarboxylate and its utilization in allylic acylation. J. Am. Chem. Soc. 102, 6381–6384 (1980).

    Article  CAS  Google Scholar 

  75. Nawrat, C. C., Jamison, C. R., Slutskyy, Y., MacMillan, D. W. C. & Overman, L. E. Oxalates as activating groups for alcohols in visible light photoredox catalysis: formation of quaternary centers by redox-neutral fragment coupling. J. Am. Chem. Soc. 137, 11270–11273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, X. & MacMillan, D. W. C. Alcohols as latent coupling fragments for metallaphotoredox catalysis: sp3sp2 cross-coupling of oxalates with aryl halides. J. Am. Chem. Soc. 138, 13862–13865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014). A nickel metallaphotoredox catalysis procedure for C( sp2)-C( sp3) cross-coupling, providing a solution for the long-standing challenge of alkyl transmetallation from boron by invoking a radical pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. El Khatib, M., Serafim, R. A. M. & Molander, G. A. α-Arylation/heteroarylation of chiral α-aminomethyltrifluoroborates by synergistic iridium photoredox/nickel cross-coupling catalysis. Angew. Chem. Int. Ed. 55, 254–258 (2016).

    Article  CAS  Google Scholar 

  79. Karakaya, I., Primer, D. N. & Molander, G. A. Photoredox cross-coupling: Ir/Ni dual catalysis for the synthesis of benzylic ethers. Org. Lett. 17, 3294–3297 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Primer, D. N., Karakaya, I., Tellis, J. C. & Molander, G. A. Single-electron transmetalation: an enabling technology for secondary alkylboron cross-coupling. J. Am. Chem. Soc. 137, 2195–2198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Amani, J., Sodagar, E. & Molander, G. A. Visible light photoredox cross-coupling of acyl chlorides with potassium alkoxymethyltrifluoroborates: synthesis of α-alkoxyketones. Org. Lett. 18, 732–735 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Luo, J. & Zhang, J. Donor–acceptor fluorophores for visible-light-promoted organic synthesis: photoredox/Ni dual catalytic C(sp3)–C(sp2) cross-coupling. ACS Catal. 6, 873–877 (2016).

    Article  CAS  Google Scholar 

  83. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Corceé, V. et al. Silicates as latent alkyl radical precursors: visible-light photocatalytic oxidation of hypervalent bis-catecholato silicon compounds. Angew. Chem. Int. Ed. 54, 11414–11418 (2015).

    Article  CAS  Google Scholar 

  85. Jouffroy, M., Primer, D. N. & Molander, G. A. Base-free photoredox/nickel dual-catalytic cross-coupling of ammonium alkylsilicates. J. Am. Chem. Soc. 138, 475–478 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Patel, N. R., Kelly, C. B., Jouffroy, M. & Molander, G. A. Engaging alkenyl halides with alkylsilicates via photoredox dual catalysis. Org. Lett. 18, 764–767 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nakajima, K., Nojima, S., Sakata, K. & Nishibayashi, Y. Visible-light-mediated aromatic substitution reactions of cyanoarenes with 4-alkyl-1,4-dihydropyridines through double carbon–carbon bond cleavage. ChemCatChem 8, 1028–1032 (2016).

    Article  CAS  Google Scholar 

  88. Zheng, C. & You, S.-L. Transfer hydrogenation with Hantzch esters and related organic hydride donors. Chem. Soc. Rev. 41, 2498–2518 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Nakajima, K., Nojima, S. & Nishibayashi, Y. Nickel- and photoredox-catalyzed cross-coupling reactions of aryl halides with 4-alkyl-1,4-dihydropyridines as formal nucleophilic alkylation reagents. Angew. Chem. Int. Ed. 55, 14106–14110 (2016).

    Article  CAS  Google Scholar 

  90. Gutiérrez-Bonet, Á., Tellis, J. C., Matsui, J. K., Vara, B. A. & Molander, G. A. 1,4-Dihydropyridines as alkyl radical precursors: introducing the aldehyde feedstock to nickel/photoredox dual catalysis. ACS Catal. 6, 8004–8008 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ahneman, D. T. & Doyle, A. G. C–H functionalization of amines with aryl halides by nickel-photoredox catalysis. Chem. Sci. 7, 7002–7006 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jeffrey, J. L., Terrett, J. A. & MacMillan, D. W. C. O–H hydrogen bonding promotes H-atom transfer from α-C–H bonds for C-alkylation of alcohols. Science 349, 1532–1536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999).

    Article  CAS  Google Scholar 

  96. Shields, B. J. & Doyle, A. G. Direct C(sp3)–H cross coupling enabled by catalytic generation of chlorine radicals. J. Am. Chem. Soc. 138, 12719–12722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hwang, S. J. et al. Halogen photoelimination from monomeric nickel(III) complexes enabled by the secondary coordination sphere. Organometallics 34, 4766–4774 (2015).

    Article  CAS  Google Scholar 

  98. Hwang, S. J., Powers, D. C., Maher, A. G. & Nocera, D. G. Tandem redox mediator/Ni(II) trihalide complex photocycle for hydrogen evolution from HCl. Chem. Sci. 6, 917–922 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Hwang, S.-J. et al. Trap-free halogen photoelimination from mononuclear Ni(III) complexes. J. Am. Chem. Soc. 137, 6472–6475 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, P., Le, C. C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Torraca, K. E., Huang, X., Parrish, C. A. & Buchwald, S. L. An efficient intermolecular palladium-catalyzed synthesis of aryl ethers. J. Am. Chem. Soc. 123, 10770–10771 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Kataoka, N., Shelby, Q., Stambuli, J. P. & Hartwig, J. F. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C–C, C–N, and C–O bond forming cross-couplings. J. Org. Chem. 67, 5553–5566 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Wolter, M., Nordmann, G., Job, G. E. & Buchwald, S. L. Copper-catalyzed coupling of aryl iodides with aliphatic alcohols. Org. Lett. 4, 973–976 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Macgregor, S. A., Neave, G. W. & Smith, C. Theoretical studies on C–heteroatom bond formation via reductive elimination from group 10 M(PH3)2(CH3)(X) species (X = CH3, NH2, OH, SH) and the determination of metal–X bond strengths using density functional theory. Faraday Discuss. 124, 111–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Zhou, W., Schultz, J. W., Rath, N. P. & Mirica, L. M. Aromatic methoxylation and hydroxylation by organometallic high-valent nickel complexes. J. Am. Chem. Soc. 137, 7604–7607 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Terrett, J. A., Cuthbertson, J. D., Shurtleff, V. W. & MacMillan, D. W. C. Switching on elusive organometallic mechanisms with photoredox catalysis. Nature 524, 330–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Klein, A. et al. Halide ligands — more than just σ-donors? A structural and spectroscopic study of homologous organonickel complexes. Inorg. Chem. 47, 11324–11333 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D. W. C. Photosensitized energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science 355, 380–385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Osawa, M., Nagai, H. & Akita, M. Photo-activation of Pd-catalyzed Sonogashira coupling using a Ru/bipyridine complex as energy transfer agent. Dalton Trans. 8, 827–829 (2007).

    Article  CAS  Google Scholar 

  111. Yoo, W.-J., Tsukamoto, T. & Kobayashi, S. Visible light-mediated Ullmann-type C–N coupling reactions of carbazole derivatives and aryl iodides. Org. Lett. 17, 3640–3642 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Corcoran, E. B. et al. Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science 353, 279–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wolfe, J. P. & Buchwald, S. L. Nickel-catalyzed amination of aryl chlorides. J. Am. Chem. Soc. 119, 6054–6058 (1997).

    Article  CAS  Google Scholar 

  114. Gao, C.-Y. & Yang, L.-M. Nickel-catalyzed amination of aryl tosylates. J. Org. Chem. 73, 1624–1627 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Park, N. H., Teverovskiy, G. & Buchwald, S. L. Development of an air-stable nickel precatalyst for the amination of aryl chlorides, sulfamates, mesylates, and triflates. Org. Lett. 16, 220–223 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Ge, S., Green, R. A. & Hartwig, J. F. Controlling first-row catalysts: amination of aryl and heteroaryl chlorides and bromides with primary aliphatic amines catalyzed by a BINAP-ligated single-component Ni(0) complex. J. Am. Chem. Soc. 136, 1617–1627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shimasahi, T., Tobisu, M. & Chatani, N. Nickel-catalyzed amination of aryl pivalates by the cleavage of aryl C–O bonds. Angew. Chem. Int. Ed. 49, 2929–2932 (2010).

    Article  CAS  Google Scholar 

  118. Lavoie, C. M. et al. Challenging nickel-catalyzed amine arylations enabled by tailored ancillary ligand design. Nat. Commun. 7, 11073 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Surry, D. S. & Buchwald, S. L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 47, 6338–6361 (2008).

    Article  CAS  Google Scholar 

  120. Kutchukian, P. S. et al. Chemistry informer libraries: a cheminformatics enabled approach to evaluate and advance synthetic methods. Chem. Sci. 7, 2604–2613 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tasker, S. Z. & Jamison, T. F. Highly regioselective indoline synthesis under nickel/photoredox dual catalysis J. Am. Chem. Soc. 137, 9531–9534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Oderinde, M. S. et al. Highly chemoselective iridium photoredox and nickel catalysis for the cross-coupling of primary aryl amines with aryl halides. Angew. Chem. Int. Ed. 55, 13219–13223 (2016).

    Article  CAS  Google Scholar 

  123. Oderinde, M. S., Frenette, M., Robbins, D. W., Aquila, B. & Johannes, J. M. Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals. J. Am. Chem. Soc. 138, 1760–1763 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Jouffroy, M., Kelly, C. B. & Molander, G. A. Thioetherification via photoredox/nickel dual catalysis. Org. Lett. 18, 876–879 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xuan, J., Zeng, T.-T., Chen, J.-R., Lu, L.-Q. & Xiao, W.-J. Room temperature C–P bond formation enabled by merging nickel catalysis and visible-light-induced photoredox catalysis. Chem. Eur. J. 21, 4962–4965 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Negishi, E.-I. & Anastasia, L. Palladium-catalyzed alkynylation. Chem. Rev. 103, 1979–2017 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Kalyani, D., McMurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room-temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011). The first example of palladium metallaphotoredox catalysis in which a distinct role for the photocatalyst was proposed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kalyani, D., Deprez, N. R., Desai, L. V. & Sanford, M. S. Oxidative C–H activation/C–C bond forming reactions: synthetic scope and mechanistic insights. J. Am. Chem. Soc. 127, 7330–7331 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Deprez, N. R. & Sanford, M. S. Synthetic and mechanistic studies of Pd-catalyzed C–H arylation with diaryliodonium salts: evidence for a bimetallic high oxidation state Pd intermediate. J. Am. Chem. Soc. 131, 11234–11241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yu, W.-Y., Sit, W., Zhou, Z. & Chan, A. S. C. Palladium-catalyzed decarboxylative arylation of C–H bonds by aryl acylperoxides. Org. Lett. 11, 3174–3177 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Maestri, G., Malacria, M. & Derat, E. Radical Pd(III)/Pd(I) reductive elimination in palladium sequences. Chem. Commun. 49, 10424–10426 (2013).

    Article  CAS  Google Scholar 

  132. Powers, D. C., Benitez, D., Tkatchouk, E., Goddard, W. A. & Ritter, T. Bimetallic reductive elimination from dinuclear Pd(III) complexes. J. Am. Chem. Soc. 132, 14092–14103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chow, P.-K. et al. Highly luminescent palladium(II) complexes with sub-millisecond blue to green phosphorescent excited states. Photocatalysis and highly efficient PSF-OLEDs. Chem. Sci. 7, 6083–6098 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zoller, J., Fabry, D. C., Ronge, M. A. & Rueping, M. Synthesis of indoles using visible light: photoredox catalysis for palladium-catalyzed C–H activation. Angew. Chem. Int. Ed. 53, 13264–13268 (2014).

    Article  CAS  Google Scholar 

  135. Rodriguez, N. & Gooßen, L. J. Decarboxylative coupling reactions: a modern strategy for C–C bond formation. Chem. Soc. Rev. 40, 5030–5048 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Zhou, C., Li, P., Zhu, X. & Wang, L. Merging photoredox with palladium catalysis: decarboxylative ortho-acylation of acetanilides with α-oxocarboxylic acids under mild reaction conditions. Org. Lett. 17, 6198–6201 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Xu, N., Li, P., Xie, Z. & Wang, L. Merging visible-light photocatalysis with palladium catalysis for C–H acylation of azo- and azoxybenzenes with α-keto acids. Chem. Eur. J. 22, 2236–2242 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Cheng, W.-M., Shang, R., Yu, H.-Z. & Fu, Y. Room-temperature decarboxylative couplings of α-oxocarboxylates with aryl halides by merging photoredox with palladium catalysis. Chem. Eur. J. 21, 13191–13195 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Lang, S. B., O’Nele, K. M. & Tunge, J. A. Decarboxylative allylation of amino alkanoic acids and esters via dual catalysis. J. Am. Chem. Soc. 136, 13606–13609 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lang, S. B., O’Nele, K. M. & Tunge, J. A. Dual catalytic decarboxylative allylations of α-amino acids and their divergent mechanisms. Chem. Eur. J. 21, 18589–18593 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Xuan, J. et al. Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis. Angew. Chem. Int. Ed. 54, 1625–1628 (2015).

    Article  CAS  Google Scholar 

  142. Ye, Y. & Sanford, M. S. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc. 134, 9034–9037 (2012). A practical, mild protocol for the synthesis of trifluoromethylated arenes; moreover, this is the first example of copper metallaphotoredox catalysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Nagib, D. A., Scott, M. E. & MacMillan, D. W. C. Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 131, 10875–10877 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yoo, W.-J., Tsukamoto, T. & Kobayashi, S. Visible-light-mediated Chan–Lam coupling reactions of aryl boronic acids and aniline derivatives. Angew. Chem. Int. Ed. 54, 6587–6590 (2015).

    Article  CAS  Google Scholar 

  146. Antilla, J. C. & Buchwald, S. L. Copper-catalyzed coupling of arylboronic acids and amines. Org. Lett. 3, 2077–2079 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, G., Cui, L., Wang, Y. & Zhang, L. Homogeneous gold-catalyzed oxidative carboheterofunctionalization of alkenes. J. Am. Chem. Soc. 132, 1474–1475 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Hopkinson, M. N., Ross, J. E., Giuffredi, G. T., Gee, A. D. & Gouverneur, V. Gold-catalyzed cascade cyclization–oxidative alkynylation of allenoates. Org. Lett. 12, 4904–4907 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Melhado, A. D., Brenzovich, W. E. Jr, Lackner, A. D. & Toste, F. D. Gold-catalyzed three-component coupling: oxidative oxyarylation of alkenes. J. Am. Chem. Soc. 132, 8885–8887 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ball, L. T., Lloyd-Jones, G. C. & Russell, C. A. Gold-catalyzed oxyarylation of styrenes and mono- and gem-disubstituted olefins facilitated by an iodine (III) oxidant. Chem. Eur. J. 18, 2931–2937 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Joost, M. et al. Facile oxidative addition of aryl iodides to gold(I) by ligand design: bending turns on reactivity. J. Am. Chem. Soc. 136, 14654–14657 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Joost, M., Estévez, L., Miqueu, K., Amgoune, A. & Bourissou, D. Oxidative addition of carbon–carbon bonds to gold. Angew. Chem. Int. Ed. 54, 5236–5240 (2015).

    Article  CAS  Google Scholar 

  153. Wu, C.-Y., Horibe, T., Jacobsen, C. B. & Toste, F. D. Stable gold(III) catalysts by oxidative addition of a carbon–carbon bond. Nature 517, 449–454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hopkinson, M. N., Tlahuext-Aca, A. & Glorius, F. Merging visible light photoredox and gold catalysis. Acc. Chem. Res. 49, 2261–2272 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Tlahuext-Aca, A., Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts. Chem. Sci. 7, 89–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Tlahuext-Aca, A., Hopkinson, M. N., Daniliuc, C. G. & Glorius, F. Oxidative addition to gold(I) by photoredox catalysis: straightforward access to diverse (C,N)-cyclometalated gold(III) complexes. Chem. Eur. J. 22, 11587–11592 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Sahoo, B., Hopkinson, M. N. & Glorius, F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 135, 5505–5508 (2013). A leading report in the field of gold metallaphotoredox catalysis, providing a new strategy for achieving gold-mediated difunctionalization of alkenes.

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, Q., Zhang, Z.-Q., Fu, Y. & Yu, H.-Z. Mechanism of the visible light-mediated gold-catalyzed oxyarylation reaction of alkenes. ACS Catal. 6, 798–808 (2016).

    Article  CAS  Google Scholar 

  159. Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual photoredox and gold catalysis: intermolecular multicomponent oxyarylation of alkenes. Adv. Synth. Catal. 356, 2794–2800 (2014).

    Article  CAS  Google Scholar 

  160. Shu, X.-z., Zhang, M., He, Y., Frei, H. & Toste, F. D. Dual visible light photoredox and gold-catalyzed arylative ring expansion. J. Am. Chem. Soc. 136, 5844–5847 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Patil, D. V., Yun, H. & Shin, S. Catalytic cross-coupling of vinyl golds with diazonium salts under photoredox and thermal conditions. Adv. Synth. Catal. 357, 2622–2628 (2015).

    Article  CAS  Google Scholar 

  162. Um, J., Yun, H. & Shin, S. Cross-coupling of Meyer–Schuster intermediates under dual gold-photoredox catalysis. Org. Lett. 18, 484–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Alcaide, B., Almendros, P., Busto, E. & Luna, A. Domino Meyer–Schuster/arylation reaction of alkynols or alkynyl hydroperoxides with diazonium salts promoted by visible light under dual gold and ruthenium catalysis. Adv. Synth. Catal. 358, 1526–1533 (2016).

    Article  CAS  Google Scholar 

  164. Tlahuext-Aca, A., Hopkinson, M. N., Garza-Sanchez, R. A. & Glorius, F. Alkyne difunctionalization by dual gold/photoredox catalysis. Chem. Eur. J. 22, 5909–5913 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Huang, L., Rudolph, M., Rominger, F. & Hashmi, A. S. K. Photosensitizer-free visible-light-mediated gold-catalyzed 1,2-difunctionalization of alkynes. Angew. Chem. Int. Ed. 55, 4808–4813 (2016).

    Article  CAS  Google Scholar 

  166. Kim, S., Rojas-Martin, J. & Toste, F. D. Visible light-mediated gold-catalysed carbon(sp2)–carbon(sp) coupling. Chem. Sci. 7, 85–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Cornilleau, T., Hermange, P. & Fouquet, E. Gold-catalysed cross-coupling between aryldiazonium salts and arylboronic acids: probing the usefulness of photoredox conditions. Chem. Commun. 52, 10040–10043 (2016).

    Article  CAS  Google Scholar 

  168. Gauchot, V. & Lee, A.-L. Dual gold photoredox C(sp2)–C(sp2) cross couplings — development and mechanistic studies. Chem. Commun. 52, 10163–10166 (2016).

    Article  CAS  Google Scholar 

  169. He, Y., Wu, H. & Toste, F. D. A dual catalytic strategy for carbon–phosphorous cross-coupling via gold and photoredox catalysis. Chem. Sci. 6, 1194–1198 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Fabry, D. C., Zoller, J., Raja, S. & Rueping, M. Combining rhodium and photoredox catalysis for C–H bond functionalization of arenes: oxidative Heck reactions with visible light. Angew. Chem. Int. Ed. 53, 10228–10231 (2014).

    Article  CAS  Google Scholar 

  171. Fabry, D. C., Ronge, M. A., Zoller, J. & Rueping, M. C–H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant. Angew. Chem. Int. Ed. 54, 2801–2805 (2015).

    Article  CAS  Google Scholar 

  172. Zhang, G. et al. External oxidant-free oxidative cross-coupling: a photoredox cobalt-catalyzed aromatic C–H thiolation for constructing C–S bonds. J. Am. Chem. Soc. 137, 9273–9280 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Zhong, J.-J. et al. Cross-coupling hydrogen evolution reaction in homogenous solution without noble metals. Org. Lett. 16, 1988–1991 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Gao, X.-W. et al. Visible light catalysis assisted site-specific functionalization of amino acid derivatives by C–H bond activation with oxidant: cross-coupling hydrogen evolution reaction. ACS Catal. 5, 2391–2396 (2015).

    Article  CAS  Google Scholar 

  175. Zhong, J.-J. et al. A cascade cross-coupling and in situ hydrogenation reaction by visible light catalysis. Adv. Synth. Catal. 356, 2846–2852 (2014).

    Article  CAS  Google Scholar 

  176. Xiang, M. et al. Activation of C–H bonds through oxidant-free photoredox cataysis: cross-coupling hydrogen-evolution transformation of isochromans and β-keto esters. Chem. Eur. J. 21, 18080–18084 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Wu, C.-J. et al. An oxidant-free strategy for indole synthesis via intramolecular C–C bond construction under visible light irradiation: cross-coupling hydrogen evolution reaction. ACS Catal. 6, 4635–4639 (2016).

    Article  CAS  Google Scholar 

  178. Ischay, M. A., Lu, Z. & Yoon, T. P. [2+2] cycloadditions by oxidative visible light photocatalysis. J. Am. Chem. Soc. 132, 8572–8574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lin, S., Ischay, M. A., Fry, C. G. & Yoon, T. Radical cation Diels–Alder cycloadditions by visible light photocatalysis. J. Am. Chem. Soc. 133, 19350–19353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Margrey, K. A. & Nicewicz, D. A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res. 49, 1997–2006 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Yi, H. et al. Photocatalytic dehydrogenative cross-coupling of alkenes with alcohols or azoles without external oxidant. Angew. Chem. Int. Ed. 56, 1120–1124 (2017).

    Article  CAS  Google Scholar 

  182. Zhang, G. et al. Anti-Markovnikov oxidation of β-alkyl styrenes with H2O as the terminal oxidant. J. Am. Chem. Soc. 138, 12037–12040 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. He, K.-H. et al. Acceptorless dehydrogenation of N-heterocycles by merging visible-light photoredox catalysis and cobalt catalysis. Angew. Chem. Int. Ed. 56, 3080–3084 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support was provided by the US National Institutes of Health, National Institute of General Medical Sciences (R01 GM103558-06) and gifts from Merck, AbbVie and Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Twilton, J., Le, C., Zhang, P. et al. The merger of transition metal and photocatalysis. Nat Rev Chem 1, 0052 (2017). https://doi.org/10.1038/s41570-017-0052

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing