Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes

Abstract

Adult neural stem cells (NSCs) are known to exist in a few regions of the brain; however, the entity and physiological/disease relevance of adult hypothalamic NSCs (htNSCs) remain unclear. This work shows that adult htNSCs are multipotent and predominantly present in the mediobasal hypothalamus of adult mice. Chronic high-fat-diet feeding led to not only depletion but also neurogenic impairment of htNSCs associated with IKKβ/NF-κB activation. In vitro htNSC models demonstrated that their survival and neurogenesis markedly decreased on IKKβ/NF-κB activation but increased on IKKβ/NF-κB inhibition, mechanistically mediated by IKKβ/NF-κB-controlled apoptosis and Notch signalling. Mouse studies revealed that htNSC-specific IKKβ/NF-κB activation led to depletion and impaired neuronal differentiation of htNSCs, and ultimately the development of obesity and pre-diabetes. In conclusion, adult htNSCs are important for the central regulation of metabolic physiology, and IKKβ/NF-κB-mediated impairment of adult htNSCs is a critical neurodegenerative mechanism for obesity and related diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo and in vitro definition of htNSCs in adult mice.
Figure 2: BrdU tracking of adult htNSCs-mediated neurogenesis in mice.
Figure 3: Fate mapping of adult htNSCs in mice under normal physiological conditions.
Figure 4: Impaired survival and neurogenesis of htNSCs derived from mice with dietary obesity.
Figure 5: Impaired in vitro proliferation of htNSCs with IKKβ/NF-κB activation.
Figure 6: In vitro effect of IKKβ/NF-κB activation on neuronal differentiation of htNSCs.
Figure 7: Effect of NF- κB inhibition on the differentiation of htNSCs derived from obese mice.
Figure 8: Mouse model of htNSCs-specific IKKβ activation and metabolic phenotypes.

Similar content being viewed by others

References

  1. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  2. Ray, J., Peterson, D. A., Schinstine, M. & Gage, F. H. Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc. Natl Acad. Sci. USA 90, 3602–3606 (1993).

    Article  CAS  Google Scholar 

  3. Cameron, H. A. & McKay, R. Stem cells and neurogenesis in the adult brain. Curr. Opin. Neurobiol. 8, 677–680 (1998).

    Article  CAS  Google Scholar 

  4. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999).

    Article  CAS  Google Scholar 

  5. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  6. Gross, C. G. Neurogenesis in the adult brain: death of a dogma. Nat. Rev. Neurosci. 1, 67–73 (2000).

    Article  CAS  Google Scholar 

  7. Morrison, S. J. Neuronal potential and lineage determination by neural stem cells. Curr. Opin. Cell Biol. 13, 666–672 (2001).

    Article  CAS  Google Scholar 

  8. Varez-Buylla, A. & Lim, D. A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

    Article  Google Scholar 

  9. Emsley, J. G., Mitchell, B. D., Kempermann, G. & Macklis, J. D. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog. Neurobiol. 75, 321–341 (2005).

    Article  CAS  Google Scholar 

  10. Gould, E. How widespread is adult neurogenesis in mammals? Nat. Rev. Neurosci. 8, 481–488 (2007).

    Article  CAS  Google Scholar 

  11. Whitman, M. C. & Greer, C. A. Adult neurogenesis and the olfactory system. Prog. Neurobiol. 89, 162–175 (2009).

    Article  Google Scholar 

  12. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  Google Scholar 

  13. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & varez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  14. Merkle, F. T., Mirzadeh, Z. & varez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007).

    Article  CAS  Google Scholar 

  15. Kriegstein, A. & varez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    Article  CAS  Google Scholar 

  16. Kokoeva, M. V., Yin, H. & Flier, J. S. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310, 679–683 (2005).

    Article  CAS  Google Scholar 

  17. Kokoeva, M. V., Yin, H. & Flier, J. S. Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J. Comput. Neurol. 505, 209–220 (2007).

    Article  Google Scholar 

  18. Pierce, A. A. & Xu, A. W. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J. Neurosci. 30, 723–730 (2010).

    Article  CAS  Google Scholar 

  19. McNay, D. E., Briancon, N., Kokoeva, M. V., Maratos-Flier, E. & Flier, J. S. Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J. Clin. Invest 122, 142–152 (2012).

    Article  CAS  Google Scholar 

  20. Lee, D. A. et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat. Neurosci. 15, 700–702 (2012).

    Article  CAS  Google Scholar 

  21. Purkayastha, S. et al. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc. Natl Acad. Sci. USA 108, 2939–2944 (2011).

    Article  CAS  Google Scholar 

  22. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    Article  CAS  Google Scholar 

  23. Cai, D. & Liu, T. Hypothalamic inflammation: A double-edged sword to nutritional diseases. Ann. N. Y. Acad. Sci. 1243, E1–E39 (2011).

    Article  Google Scholar 

  24. Cai, D. & Liu, T. Inflammatory cause of metabolic syndrome via brain stress and NF-κB. Aging 4, 98–115 (2012).

    Article  CAS  Google Scholar 

  25. Purkayastha, S., Zhang, G. & Cai, D. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-β and NF-κB. Nat. Med. 17, 883–887 (2011).

    Article  CAS  Google Scholar 

  26. Hayden, M. S., West, A. P. & Ghosh, S. SnapShot: NF-κB signaling pathways. Cell 127, 1286–1287 (2006).

    Article  Google Scholar 

  27. Hoffmann, A. & Baltimore, D. Circuitry of nuclear factor κB signaling. Immunol. Rev. 210, 171–186 (2006).

    Article  Google Scholar 

  28. Li, Q. & Verma, I. M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  29. Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nat. Immunol. 3, 221–227 (2002).

    Article  CAS  Google Scholar 

  30. Vousden, K. H. Partners in death: a role for p73 and NF-kB in promoting apoptosis. Aging 1, 275–277 (2009).

    Article  CAS  Google Scholar 

  31. Dutta, J., Fan, Y., Gupta, N., Fan, G. & Gelinas, C. Current insights into the regulation of programmed cell death by NF-κB. Oncogene 25, 6800–6816 (2006).

    Article  CAS  Google Scholar 

  32. Rolls, A. et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat. Cell Biol. 9, 1081–1088 (2007).

    Article  CAS  Google Scholar 

  33. Koo, J. W. & Duman, R. S. IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl Acad. Sci. USA 105, 751–756 (2008).

    Article  CAS  Google Scholar 

  34. Koo, J. W., Russo, S. J., Ferguson, D., Nestler, E. J. & Duman, R. S. Nuclear factor-κB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc. Natl Acad. Sci. USA 107, 2669–2674 (2010).

    Article  CAS  Google Scholar 

  35. Is-Donini, S. et al. Impaired adult neurogenesis associated with short-term memory defects in NF-κB p50-deficient mice. J. Neurosci. 28, 3911–3919 (2008).

    Article  Google Scholar 

  36. Martino, G. & Pluchino, S. The therapeutic potential of neural stem cells. Nat. Rev. Neurosci. 7, 395–406 (2006).

    Article  CAS  Google Scholar 

  37. Villeda, S. & Wyss-Coray, T. Microglia–a wrench in the running wheel? Neuron 59, 527–529 (2008).

    Article  CAS  Google Scholar 

  38. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    Article  CAS  Google Scholar 

  39. Niswender, K. D., Baskin, D. G. & Schwartz, M. W. Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends Endocrinol. Metab 15, 362–369 (2004).

    Article  CAS  Google Scholar 

  40. Munzberg, H. & Myers, M. G. Jr Molecular and anatomical determinants of central leptin resistance. Nat. Neurosci. 8, 566–570 (2005).

    Article  Google Scholar 

  41. Flier, J. S. Neuroscience. Regulating energy balance: the substrate strikes back. Science 312, 861–864 (2006).

    Article  CAS  Google Scholar 

  42. Coll, A. P., Farooqi, I. S. & O’Rahilly, S. The hormonal control of food intake. Cell 129, 251–262 (2007).

    Article  CAS  Google Scholar 

  43. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest 122, 153–162 (2012).

    Article  CAS  Google Scholar 

  44. Suh, H. et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1, 515–528 (2007).

    Article  CAS  Google Scholar 

  45. Gilyarov, A. V. Nestin in central nervous system cells. Neurosci. Behav. Physiol 38, 165–169 (2008).

    Article  CAS  Google Scholar 

  46. Vacca, A. et al. Notch3 and pre-TCR interaction unveils distinct NF-κB pathways in T-cell development and leukemia. EMBO J. 25, 1000–1008 (2006).

    Article  CAS  Google Scholar 

  47. Oakley, F. et al. Basal expression of IκBα is controlled by the mammalian transcriptional repressor RBP-J (CBF1) and its activator Notch1. J. Biol. Chem. 278, 24359–24370 (2003).

    Article  CAS  Google Scholar 

  48. Espinosa, L., Ingles-Esteve, J., Robert-Moreno, A. & Bigas, A. IκBα and p65 regulate the cytoplasmic shuttling of nuclear corepressors: cross-talk between Notch and NFκB pathways. Mol. Biol. Cell 14, 491–502 (2003).

    Article  CAS  Google Scholar 

  49. Cheng, P. et al. Notch-1 regulates NF-κB activity in hemopoietic progenitor cells. J. Immunol. 167, 4458–4467 (2001).

    Article  CAS  Google Scholar 

  50. Borghese, L. et al. Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo. Stem Cells 28, 955–964 (2010).

    Article  CAS  Google Scholar 

  51. Carlen, M. et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat. Neurosci. 12, 259–267 (2009).

    Article  CAS  Google Scholar 

  52. Louvi, A. & Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci. 7, 93–102 (2006).

    Article  CAS  Google Scholar 

  53. Oya, S. et al. Attenuation of Notch signaling promotes the differentiation of neural progenitors into neurons in the hippocampal CA1 region after ischemic injury. Neuroscience 158, 683–692 (2009).

    Article  CAS  Google Scholar 

  54. Lutolf, S., Radtke, F., Aguet, M., Suter, U. & Taylor, V. Notch1 is required forneuronal and glial differentiation in the cerebellum. Development 129, 373–385 (2002).

    CAS  PubMed  Google Scholar 

  55. rtavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  Google Scholar 

  56. Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    Article  CAS  Google Scholar 

  57. Zhang, G. et al. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron 69, 523–535 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank F. H. Gage (The Salk Institute for Biological Studies, USA) for the Sox2-promoter-containing lentiviral vector, D. Hickstein (National Cancer Institute, National Institutes of Health, USA) for the CD11b-promoter cDNA, and the members of the Cai laboratory for general technical assistance. This study was supported by Albert Einstein College of Medicine internal start-up funds and NIH R01 DK078750 and R01 AG031774 (all to D. Cai).

Author information

Authors and Affiliations

Authors

Contributions

D.C. conceived the project and designed the study. J.L. carried out all experiments and participated in the experimental design. Y.T. generated luciferase constructs of wild-type and mutant Notch signalling element gene promoters. J.L. and D.C. carried out data interpretation and discussion. D.C. wrote the paper.

Corresponding author

Correspondence to Dongsheng Cai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1914 kb)

Supplementary Table 1

Supplementary Information (XLS 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Tang, Y. & Cai, D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14, 999–1012 (2012). https://doi.org/10.1038/ncb2562

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2562

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing