Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly

Key Points

  • Activation of cannabinoid receptor 1 (CB1R) by endocannabinoids or synthetic ligands mediates acute haemodynamic effects and might contribute to pathology in cardiovascular disease; activation of cannabinoid receptor 2 (CB2R) exerts anti-inflammatory effects

  • The psychoactive constituent of marijuana, Δ9-tetrahydrocannabinol (THC), exerts its cardiovascular effects via CB1R activation; at low doses it might have beneficial properties via partial activation of CB1R and CB2R, and unrelated mechanisms

  • The composition of marijuana (THC–cannabidiol ratio, terpenoids) can influence its therapeutic and cardiovascular adverse effects, with marijuana smoke being as harmful as tobacco smoke

  • Most synthetic cannabinoids used for recreational use are full agonists of CB1R (THC is a partial agonist) with up to several hundred-fold higher potency and efficacy than THC, causing more dangerous adverse effects

  • In parallel with a tenfold increase in the THC content of marijuana and the widespread availability of synthetic cannabinoids for recreational use, the number of serious cardiovascular adverse effects reported has markedly increased

  • Clinicians should be vigilant to recognizing potential cardiovascular effects of marijuana and synthetic cannabinoids; controlled clinical trials should determine the long-term consequences of the use of medical marijuana on cardiovascular morbidity and mortality

Abstract

Dysregulation of the endogenous lipid mediators endocannabinoids and their G-protein-coupled cannabinoid receptors 1 and 2 (CB1R and CB2R) has been implicated in a variety of cardiovascular pathologies. Activation of CB1R facilitates the development of cardiometabolic disease, whereas activation of CB2R (expressed primarily in immune cells) exerts anti-inflammatory effects. The psychoactive constituent of marijuana, Δ9-tetrahydrocannabinol (THC), is an agonist of both CB1R and CB2R, and exerts its psychoactive and adverse cardiovascular effects through the activation of CB1R in the central nervous and cardiovascular systems. The past decade has seen a nearly tenfold increase in the THC content of marijuana as well as the increased availability of highly potent synthetic cannabinoids for recreational use. These changes have been accompanied by the emergence of serious adverse cardiovascular events, including myocardial infarction, cardiomyopathy, arrhythmias, stroke, and cardiac arrest. In this Review, we summarize the role of the endocannabinoid system in cardiovascular disease, and critically discuss the cardiovascular consequences of marijuana and synthetic cannabinoid use. With the legalization of marijuana for medicinal purposes and/or recreational use in many countries, physicians should be alert to the possibility that the use of marijuana or its potent synthetic analogues might be the underlying cause of severe cardiovascular events and pathologies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathophysiological effects of the endocannabinoid system in health and disease.
Figure 2: Reported cardiovascular adverse consequences of recreational marijuana and synthetic cannabinoid use.
Figure 3: Adverse cardiovascular consequences of synthetic cannabinoids.

Similar content being viewed by others

References

  1. World Health Organization. The health and social effects of nonmedical cannabis use. WHO http://www.who.int/substance_abuse/publications/msbcannabis.pdf (2016).

  2. NewFrontier data. The cannabis industry annual report: 2017 legal marijuana outlook. NewFrontier data https://newfrontierdata.com/annualreport2017/ (2017).

  3. United Nations Office on Drugs and Crime. Synthetic cannabinoids: key facts about the largest and most dynamic group of NPS. UNODC https://www.unodc.org/documents/scientific/Global_SMART_Update_13_web.pdf (2015).

  4. Banister, S. D. et al. Pharmacology of indole and indazole synthetic cannabinoid designer drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB–PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem. Neurosci. 6, 1546–1559 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Adams, A. J. et al. “Zombie” outbreak caused by the synthetic cannabinoid AMB-FUBINACA in New York. N. Engl. J. Med. 376, 235–242 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Kasper, A. M. et al. Severe illness associated with reported use of synthetic cannabinoids — Mississippi, April 2015. MMWR Morb. Mortal. Wkly Rep. 64, 1121–1122 (2015).

    Article  PubMed  Google Scholar 

  7. Law, R. et al. Notes from the field: increase in reported adverse health effects related to synthetic cannabinoid use — United States, January–May 2015. MMWR Morb. Mortal. Wkly Rep. 64, 618–619 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Pacher, P. et al. Modulation of the endocannabinoid system in cardiovascular disease: therapeutic potential and limitations. Hypertension 52, 601–607 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Pacher, P. & Hasko, G. Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and preconditioning. Br. J. Pharmacol. 153, 252–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Steffens, S. & Pacher, P. Targeting cannabinoid receptor CB2 in cardiovascular disorders: promises and controversies. Br. J. Pharmacol. 167, 313–323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Montecucco, F. & Di Marzo, V. At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction. Trends Pharmacol. Sci. 33, 331–340 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Steffens, S. & Pacher, P. The activated endocannabinoid system in atherosclerosis: driving force or protective mechanism? Curr. Drug Targets 16, 334–341 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Pertwee, R. G. et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2 . Pharmacol. Rev. 62, 588–631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pacher, P., Batkai, S. & Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58, 389–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Kunos, G. & Tam, J. The case for peripheral CB1 receptor blockade in the treatment of visceral obesity and its cardiometabolic complications. Br. J. Pharmacol. 163, 1423–1431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nat. Rev. Drug Discov. 7, 438–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Pacher, P. & Mechoulam, R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog. Lipid Res. 50, 193–211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Howlett, A. C. et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 54, 161–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Soethoudt, M. et al. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat. Commun. 8, 13958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delgado-Peraza, F. et al. Mechanisms of biased beta-arrestin-mediated signaling downstream from the cannabinoid 1 receptor. Mol. Pharmacol. 89, 618–629 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. & Ueda, N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 279, 5298–5305 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, J. et al. Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology 54, 1–7 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Simon, G. M. & Cravatt, B. F. Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J. Biol. Chem. 283, 9341–9349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, Y. et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J. Neurosci. 30, 2017–2024 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanimura, A. et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65, 320–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Hsu, K. L. et al. DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat. Chem. Biol. 8, 999–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Willoughby, K. A., Moore, S. F., Martin, B. R. & Ellis, E. F. The biodisposition and metabolism of anandamide in mice. J. Pharmacol. Exp. Ther. 282, 243–247 (1997).

    CAS  PubMed  Google Scholar 

  31. Cravatt, B. F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl Acad. Sci. USA 98, 9371–9376 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dinh, T. P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA 99, 10819–10824 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, M., Ives, D. & Ramesha, C. S. Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J. Biol. Chem. 272, 21181–21186 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Kozak, K. R., Rowlinson, S. W. & Marnett, L. J. Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J. Biol. Chem. 275, 33744–33749 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Ueda, N., Tsuboi, K. & Uyama, T. Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS Lett. 280, 1874–1894 (2013).

    Article  CAS  Google Scholar 

  36. Wang, J. & Ueda, N. Biology of endocannabinoid synthesis system. Prostaglandins Other Lipid Mediat. 89, 112–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Piscitelli, F. & Di Marzo, V. “Redundancy” of endocannabinoid inactivation: new challenges and opportunities for pain control. ACS Chem. Neurosci. 3, 356–363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonz, A. et al. Cannabinoids acting on CB1 receptors decrease contractile performance in human atrial muscle. J. Cardiovasc. Pharmacol. 41, 657–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Batkai, S. et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation 110, 1996–2002 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Montecucco, F. et al. CB2 cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion. J. Mol. Cell. Cardiol. 46, 612–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Rajesh, M. et al. Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes 61, 716–727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mukhopadhyay, P. et al. CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicin-induced cardiomyopathy and in human cardiomyocytes. Cardiovasc. Res. 85, 773–784 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Mukhopadhyay, P. et al. Pharmacological inhibition of CB1 cannabinoid receptor protects against doxorubicin-induced cardiotoxicity. J. Am. Coll. Cardiol. 50, 528–536 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sugiura, T. et al. Detection of an endogenous cannabimimetic molecule, 2-arachidonoylglycerol, and cannabinoid CB1 receptor mRNA in human vascular cells: is 2-arachidonoylglycerol a possible vasomodulator? Biochem. Biophys. Res. Commun. 243, 838–843 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Deutsch, D. G. et al. Production and physiological actions of anandamide in the vasculature of the rat kidney. J. Clin. Invest. 100, 1538–1546 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rajesh, M., Mukhopadhyay, P., Hasko, G. & Pacher, P. Cannabinoid CB1 receptor inhibition decreases vascular smooth muscle migration and proliferation. Biochem. Biophys. Res. Commun. 377, 1248–1252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rajesh, M. et al. Cannabinoid-1 receptor activation induces reactive oxygen species–dependent and –independent mitogen-activated protein kinase activation and cell death in human coronary artery endothelial cells. Br. J. Pharmacol. 160, 688–700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Galiegue, S. et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 232, 54–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Hohmann, A. G. & Herkenham, M. Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience 90, 923–931 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Niederhoffer, N., Schmid, K. & Szabo, B. The peripheral sympathetic nervous system is the major target of cannabinoids in eliciting cardiovascular depression. Naunyn Schmiedebergs Arch. Pharmacol. 367, 434–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Burdyga, G. et al. Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J. Neurosci. 24, 2708–2715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wenzel, D. et al. Endocannabinoid anandamide mediates hypoxic pulmonary vasoconstriction. Proc. Natl Acad. Sci. USA 110, 18710–18715 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prescott, S. M. & Majerus, P. W. Characterization of 1,2-diacylglycerol hydrolysis in human platelets. Demonstration of an arachidonoyl-monoacylglycerol intermediate. J. Biol. Chem. 258, 764–769 (1983).

    CAS  PubMed  Google Scholar 

  54. Batkai, S. et al. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat. Med. 7, 827–832 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Wagner, J. A. et al. Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J. Am. Coll. Cardiol. 38, 2048–2054 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Chiurchiu, V. et al. Detailed characterization of the endocannabinoid system in human macrophages and foam cells, and anti-inflammatory role of type-2 cannabinoid receptor. Atherosclerosis 233, 55–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Maccarrone, M. et al. Lipopolysaccharide downregulates fatty acid amide hydrolase expression and increases anandamide levels in human peripheral lymphocytes. Arch. Biochem. Biophys. 393, 321–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Matias, I. et al. Presence and regulation of the endocannabinoid system in human dendritic cells. Eur. J. Biochem. 269, 3771–3778 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Maccarrone, M., Bari, M., Menichelli, A., Del Principe, D. & Agro, A. F. Anandamide activates human platelets through a pathway independent of the arachidonate cascade. FEBS Lett. 447, 277–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Chouinard, F. et al. The endocannabinoid 2-arachidonoyl-glycerol activates human neutrophils: critical role of its hydrolysis and de novo leukotriene B4 biosynthesis. J. Immunol. 186, 3188–3196 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Randall, M. D. et al. An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochem. Biophys. Res. Commun. 229, 114–120 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Molica, F. et al. Endogenous cannabinoid receptor CB1 activation promotes vascular smooth-muscle cell proliferation and neointima formation. J. Lipid Res. 54, 1360–1368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Molica, F. et al. Cannabinoid receptor CB2 protects against balloon-induced neointima formation. Am. J. Physiol. Heart Circ. Physiol. 302, H1064–H1074 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rajesh, M. et al. CB2 cannabinoid receptor agonists attenuate TNF-alpha-induced human vascular smooth muscle cell proliferation and migration. Br. J. Pharmacol. 153, 347–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Pacher, P., Batkai, S. & Kunos, G. Cardiovascular pharmacology of cannabinoids. Handb. Exp. Pharmacol. 599–625 (2005).

  66. Stanley, C. & O'Sullivan, S. E. Vascular targets for cannabinoids: animal and human studies. Br. J. Pharmacol. 171, 1361–1378 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Benyo, Z., Ruisanchez, E., Leszl-Ishiguro, M., Sandor, P. & Pacher, P. Endocannabinoids in cerebrovascular regulation. Am. J. Physiol. Heart Circ. Physiol. 310, H785–H801 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu, J. et al. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem. J. 346, 835–840 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Batkai, S. & Pacher, P. Endocannabinoids and cardiac contractile function: pathophysiological implications. Pharmacol. Res. 60, 99–106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pacher, P., Batkai, S. & Kunos, G. Haemodynamic profile and responsiveness to anandamide of TRPV1 receptor knock-out mice. J. Physiol. 558, 647–657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pacher, P. et al. Hemodynamic profile, responsiveness to anandamide, and baroreflex sensitivity of mice lacking fatty acid amide hydrolase. Am. J. Physiol. Heart Circ. Physiol. 289, H533–H541 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Lake, K. D., Compton, D. R., Varga, K., Martin, B. R. & Kunos, G. Cannabinoid-induced hypotension and bradycardia in rats mediated by CB1-like cannabinoid receptors. J. Pharmacol. Exp. Ther. 281, 1030–1037 (1997).

    CAS  PubMed  Google Scholar 

  73. Wagner, J. A. et al. Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock. Nature 390, 518–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Varga, K., Wagner, J. A., Bridgen, D. T. & Kunos, G. Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J. 12, 1035–1044 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Wagner, J. A., Varga, K. & Kunos, G. Cardiovascular actions of cannabinoids and their generation during shock. J. Mol. Med. (Berl.) 76, 824–836 (1998).

    Article  CAS  Google Scholar 

  76. Batkai, S. et al. Endocannabinoids acting at CB1 receptors mediate the cardiac contractile dysfunction in vivo in cirrhotic rats. Am. J. Physiol. Heart Circ. Physiol. 293, H1689–H1695 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Slavic, S. et al. Cannabinoid receptor 1 inhibition improves cardiac function and remodelling after myocardial infarction and in experimental metabolic syndrome. J. Mol. Med. (Berl.) 91, 811–823 (2013).

    Article  CAS  Google Scholar 

  78. Mukhopadhyay, P. et al. Fatty acid amide hydrolase is a key regulator of endocannabinoid-induced myocardial tissue injury. Free Radic. Biol. Med. 50, 179–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Yang, Y. Y., Liu, H., Nam, S. W., Kunos, G. & Lee, S. S. Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: interaction between TNFalpha and endocannabinoids. J. Hepatol. 53, 298–306 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schaich, C. L., Shaltout, H. A., Brosnihan, K. B., Howlett, A. C. & Diz, D. I. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats. Physiol. Rep. 2, e12108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Di Filippo, C., Rossi, F., Rossi, S. & D'Amico, M. Cannabinoid CB2 receptor activation reduces mouse myocardial ischemia-reperfusion injury: involvement of cytokine/chemokines and PMN. J. Leukoc. Biol. 75, 453–459 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Li, Q., Wang, F., Zhang, Y. M., Zhou, J. J. & Zhang, Y. Activation of cannabinoid type 2 receptor by JWH133 protects heart against ischemia/reperfusion-induced apoptosis. Cell. Physiol. Biochem. 31, 693–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, P. F. et al. Cannabinoid-2 receptor activation protects against infarct and ischemia-reperfusion heart injury. J. Cardiovasc. Pharmacol. 59, 301–307 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, M. et al. Cannabinoid CB2 receptor activation decreases cerebral infarction in a mouse focal ischemia/reperfusion model. J. Cereb. Blood Flow Metab. 27, 1387–1396 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, M. et al. CB2 receptor activation attenuates microcirculatory dysfunction during cerebral ischemic/reperfusion injury. Microvasc. Res. 78, 86–94 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hillard, C. J. Role of cannabinoids and endocannabinoids in cerebral ischemia. Curr. Pharm. Des. 14, 2347–2361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, M. et al. Modulation of the balance between cannabinoid CB1 and CB2 receptor activation during cerebral ischemic/reperfusion injury. Neuroscience 152, 753–760 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Steffens, S. et al. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 434, 782–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, Y. et al. WIN55212-2 ameliorates atherosclerosis associated with suppression of pro-inflammatory responses in ApoE-knockout mice. Eur. J. Pharmacol. 649, 285–292 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Zhao, Y. et al. Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules. J. Cardiovasc. Pharmacol. 55, 292–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Netherland, C. D., Pickle, T. G., Bales, A. & Thewke, D. P. Cannabinoid receptor type 2 (CB2) deficiency alters atherosclerotic lesion formation in hyperlipidemic Ldlr-null mice. Atherosclerosis 213, 102–108 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hoyer, F. F. et al. Atheroprotection via cannabinoid receptor-2 is mediated by circulating and vascular cells in vivo. J. Mol. Cell. Cardiol. 51, 1007–1014 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Willecke, F. et al. Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice. PLoS ONE 6, e19405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Freeman-Anderson, N. E. et al. Cannabinoid (CB2) receptor deficiency reduces the susceptibility of macrophages to oxidized LDL/oxysterol-induced apoptosis. J. Lipid Res. 49, 2338–2346 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pacher, P. Cannabinoid CB1 receptor antagonists for atherosclerosis and cardiometabolic disorders: new hopes, old concerns? Arterioscler. Thromb. Vasc. Biol. 29, 7–9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dol-Gleizes, F. et al. Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 29, 12–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Sugamura, K. et al. Activated endocannabinoid system in coronary artery disease and antiinflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 119, 28–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, L. S., Pu, J., Han, Z. H., Hu, L. H. & He, B. Role of activated endocannabinoid system in regulation of cellular cholesterol metabolism in macrophages. Cardiovasc. Res. 81, 805–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tall, A. R., Yvan-Charvet, L., Westerterp, M. & Murphy, A. J. Cholesterol efflux: a novel regulator of myelopoiesis and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 32, 2547–2552 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Tiyerili, V. et al. CB1 receptor inhibition leads to decreased vascular AT1 receptor expression, inhibition of oxidative stress and improved endothelial function. Basic Res. Cardiol. 105, 465–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Lenglet, S. et al. Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. Arterioscler. Thromb. Vasc. Biol. 33, 215–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Hoyer, F. F. et al. Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice. J. Mol. Cell. Cardiol. 66, 126–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Montecucco, F. et al. Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis. Atherosclerosis 205, 433–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Jehle, J. et al. Myeloid-specific deletion of diacylglycerol lipase alpha inhibits atherogenesis in ApoE-deficient mice. PLoS ONE 11, e0146267 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bluher, M. et al. Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes 55, 3053–3060 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Silvestri, C. & Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17, 475–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Cote, M. et al. Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int. J. Obes. (Lond.) 31, 692–699 (2007).

    Article  CAS  Google Scholar 

  109. Wilson, P. W., D'Agostino, R. B., Sullivan, L., Parise, H. & Kannel, W. B. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch. Intern. Med. 162, 1867–1872 (2002).

    Article  PubMed  Google Scholar 

  110. Di Marzo, V. & Matias, I. Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 8, 585–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Despres, J. P., Golay, A. & Sjostrom, L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med. 353, 2121–2134 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Pi-Sunyer, F. X., Aronne, L. J., Heshmati, H. M., Devin, J. & Rosenstock, J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295, 761–775 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Scheen, A. J., Finer, N., Hollander, P., Jensen, M. D. & Van Gaal, L. F. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368, 1660–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Van Gaal, L. F., Rissanen, A. M., Scheen, A. J., Ziegler, O. & Rossner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Van Gaal, L., Pi-Sunyer, X., Despres, J. P., McCarthy, C. & Scheen, A. Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: pooled 1-year data from the Rimonabant in Obesity (RIO) program. Diabetes Care 31 (Suppl. 2), S229–S240 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Van Gaal, L. F. et al. Long-term effect of CB1 blockade with rimonabant on cardiometabolic risk factors: two year results from the RIO-Europe Study. Eur. Heart J. 29, 1761–1771 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Nissen, S. E. et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299, 1547–1560 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Topol, E. J. et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet 376, 517–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. O'Leary, D. H. et al. Effect of rimonabant on carotid intima-media thickness (CIMT) progression in patients with abdominal obesity and metabolic syndrome: the AUDITOR Trial. Heart 97, 1143–1150 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Rumsfeld, J. S. & Nallamothu, B. K. The hope and fear of rimonabant. JAMA 299, 1601–1602 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Christensen, R., Kristensen, P. K., Bartels, E. M., Bliddal, H. & Astrup, A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370, 1706–1713 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Quercioli, A. et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur. Heart J. 32, 1369–1378 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Quercioli, A. et al. Coronary vasomotor control in obesity and morbid obesity: contrasting flow responses with endocannabinoids, leptin, and inflammation. JACC Cardiovasc. Imaging 5, 805–815 (2012).

    Article  PubMed  Google Scholar 

  124. Valenta-Schindler, I., Varga, Z. V., Pacher, P. & Schindler, T. Molecular imaging of myocardial cannabinoid type 1 receptor up-regulation in obesity [abstract 197]. J. Am. Coll. Cardiol. 69 (Suppl.), 1516 (2017).

    Article  Google Scholar 

  125. Cappellano, G. et al. Different expression and function of the endocannabinoid system in human epicardial adipose tissue in relation to heart disease. Can. J. Cardiol. 29, 499–509 (2012).

    Article  PubMed  Google Scholar 

  126. Baye, T. M. et al. Genetic variation in cannabinoid receptor 1 (CNR1) is associated with derangements in lipid homeostasis, independent of body mass index. Pharmacogenomics 9, 1647–1656 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, Y. et al. Obesity-related dyslipidemia associated with FAAH, independent of insulin response, in multigenerational families of Northern European descent. Pharmacogenomics 10, 1929–1939 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Feng, Q. et al. A common CNR1 (cannabinoid receptor 1) haplotype attenuates the decrease in HDL cholesterol that typically accompanies weight gain. PLoS ONE 5, e15779 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Feng, Q. et al. A common functional promoter variant links CNR1 gene expression to HDL cholesterol level. Nat. Commun. 4, 1973 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Silver, H. J. et al. CNR1 genotype influences HDL-cholesterol response to change in dietary fat intake. PLoS ONE 7, e36166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sipe, J. C., Waalen, J., Gerber, A. & Beutler, E. Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int. J. Obes. (Lond.) 29, 755–759 (2005).

    Article  CAS  Google Scholar 

  132. de Luis, D. A. et al. C358A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) and insulin resistance in patients with diabetes mellitus type 2. Diabetes Res. Clin. Pract. 88, 76–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Reinhard, W. et al. Common polymorphisms in the cannabinoid CB2 receptor gene (CNR2) are not associated with myocardial infarction and cardiovascular risk factors. Int. J. Mol. Med. 22, 165–174 (2008).

    CAS  PubMed  Google Scholar 

  134. Izzo, A. A., Borrelli, F., Capasso, R., Di Marzo, V. & Mechoulam, R. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci. 30, 515–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Radwan, M. M. et al. Isolation and pharmacological evaluation of minor cannabinoids from high-potency Cannabis sativa. J. Nat. Prod. 78, 1271–1276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mechoulam, R. & Hanus, L. A historical overview of chemical research on cannabinoids. Chem. Phys. Lipids 108, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Hampson, A. J., Grimaldi, M., Axelrod, J. & Wink, D. Cannabidiol and (-)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl Acad. Sci. USA 95, 8268–8273 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weiss, L. et al. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity 39, 143–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Weiss, L. et al. Cannabidiol arrests onset of autoimmune diabetes in NOD mice. Neuropharmacology 54, 244–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Lehmann, C. et al. Experimental cannabidiol treatment reduces early pancreatic inflammation in type 1 diabetes. Clin. Hemorheol. Microcirc. 64, 655–662 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Horvath, B., Mukhopadhyay, P., Hasko, G. & Pacher, P. The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications. Am. J. Pathol. 180, 432–442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gruden, G., Barutta, F., Kunos, G. & Pacher, P. Role of the endocannabinoid system in diabetes and diabetic complications. Br. J. Pharmacol. 173, 1116–1127 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Durst, R. et al. Cannabidiol, a nonpsychoactive cannabis constituent, protects against myocardial ischemic reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 293, H3602–H3607 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Feng, Y. et al. Pharmacologic effects of cannabidiol on acute reperfused myocardial infarction in rabbits: evaluated with 3.0T cardiac magnetic resonance imaging and histopathology. J. Cardiovasc. Pharmacol. 66, 354–363 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Stanley, C. P., Hind, W. H. & O'Sullivan, S. E. Is the cardiovascular system a therapeutic target for cannabidiol? Br. J. Clin. Pharmacol. 75, 313–322 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Hayakawa, K. et al. Cannabidiol prevents infarction via the non-CB1 cannabinoid receptor mechanism. Neuroreport 15, 2381–2385 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Mishima, K. et al. Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke 36, 1077–1082 (2005).

    Article  PubMed  Google Scholar 

  148. Ceprian, M. et al. Cannabidiol reduces brain damage and improves functional recovery in a neonatal rat model of arterial ischemic stroke. Neuropharmacology 116, 151–159 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Hayakawa, K. et al. Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase-inhibiting mechanism. J. Neurochem. 102, 1488–1496 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Hayakawa, K. et al. Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. Neuropharmacology 55, 1280–1286 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Hayakawa, K. et al. Therapeutic time window of cannabidiol treatment on delayed ischemic damage via high-mobility group box1-inhibiting mechanism. Biol. Pharm. Bull. 32, 1538–1544 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Hao, E. et al. Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis. Mol. Med. 21, 38–45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fouad, A. A., Albuali, W. H., Al-Mulhim, A. S. & Jresat, I. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. Environ. Toxicol. Pharmacol. 36, 347–357 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Rajesh, M. et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J. Am. Coll. Cardiol. 56, 2115–2125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lee, W. S. et al. Cannabidiol limits T cell-mediated chronic autoimmune myocarditis: implications to autoimmune disorders and organ transplantation. Mol. Med. http://dx.doi.org/10.2119/molmed.2016.00007 (2016).

  156. Cunha, J. M. et al. Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21, 175–185 (1980).

    Article  CAS  PubMed  Google Scholar 

  157. Devinsky, O. et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 15, 270–278 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Devinsky, O. et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med. 376, 2011–2020 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. O'Connell, B. K., Gloss, D. & Devinsky, O. Cannabinoids in treatment-resistant epilepsy: a review. Epilepsy Behav. 70, 341–348 (2017).

    Article  PubMed  Google Scholar 

  160. Yeshurun, M. et al. Cannabidiol for the prevention of graft-versus-host-disease after allogeneic hematopoietic cell transplantation: results of a phase II study. Biol. Blood Marrow Transplant. 21, 1770–1775 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Silvestri, C. et al. Two non-psychoactive cannabinoids reduce intracellular lipid levels and inhibit hepatosteatosis. J. Hepatol. 62, 1382–1390 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Wargent, E. T. et al. The cannabinoid Δ9-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutr. Diabetes 3, e68 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Jadoon, K. A. et al. Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study. Diabetes Care 39, 1777–1786 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Englund, A. et al. The effect of five day dosing with THCV on THC-induced cognitive, psychological and physiological effects in healthy male human volunteers: a placebo-controlled, double-blind, crossover pilot trial. J. Psychopharmacol. 30, 140–151 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Russo, E. B. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 163, 1344–1364 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Waldman, M. et al. An ultra-low dose of tetrahydrocannabinol provides cardioprotection. Biochem. Pharmacol. 85, 1626–1633 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Dudok, B. et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci. 18, 75–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Bilkei-Gorzo, A. et al. A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat. Med. 23, 782–787 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Kaskie, B., Ayyagari, P., Milavetz, G., Shane, D. & Arora, K. The increasing use of cannabis among older Americans: a public health crisis or viable policy alternative? Gerontologist http://dx.doi.org/10.1093/geront/gnw166 (2017).

  170. Alshaarawy, O. & Anthony, J. C. Cannabis smoking and serum C-reactive protein: a quantile regressions approach based on NHANES 2005–2010. Drug Alcohol Depend. 147, 203–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Rajavashisth, T. B. et al. Decreased prevalence of diabetes in marijuana users: cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) III. BMJ Open 2, e000494 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Muniyappa, R. et al. Metabolic effects of chronic cannabis smoking. Diabetes Care 36, 2415–2422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hollister, L. E. & Reaven, G. M. Delta-9-tetrahydrocannabinol and glucose tolerance. Clin. Pharmacol. Ther. 16, 297–302 (1974).

    Article  CAS  PubMed  Google Scholar 

  174. Jourdan, T. et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat. Med. 19, 1132–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Despres, J. P., Ross, R., Boka, G., Almeras, N. & Lemieux, I. Effect of rimonabant on the high-triglyceride/ low-HDL-cholesterol dyslipidemia, intraabdominal adiposity, and liver fat: the ADAGIO-Lipids trial. Arterioscler. Thromb. Vasc. Biol. 29, 416–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Bedi, G., Cooper, Z. D. & Haney, M. Subjective, cognitive and cardiovascular dose-effect profile of nabilone and dronabinol in marijuana smokers. Addict. Biol. 18, 872–881 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Gorelick, D. A. et al. Tolerance to effects of high-dose oral Δ9-tetrahydrocannabinol and plasma cannabinoid concentrations in male daily cannabis smokers. J. Anal. Toxicol. 37, 11–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Huestis, M. A. et al. Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch. Gen. Psychiatry 58, 322–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Gorelick, D. A. et al. The cannabinoid CB1 receptor antagonist rimonabant attenuates the hypotensive effect of smoked marijuana in male smokers. Am. Heart J. 151, 754.e1–754.e5 (2006).

    Article  CAS  Google Scholar 

  180. Huestis, M. A. et al. Single and multiple doses of rimonabant antagonize acute effects of smoked cannabis in male cannabis users. Psychopharmacology (Berl.) 194, 505–515 (2007).

    Article  CAS  Google Scholar 

  181. Klumpers, L. E. et al. Surinabant, a selective cannabinoid receptor type 1 antagonist, inhibits Δ9-tetrahydrocannabinol-induced central nervous system and heart rate effects in humans. Br. J. Clin. Pharmacol. 76, 65–77 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Agarwal, N. et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat. Neurosci. 10, 870–879 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Groblewski, T. et al. Pre-clinical pharmacological properties of novel peripherally-acting CB1-CB2 agonists. Proceedings of 20th Annual Symposium of the International Cannabinoid Research Society (2010).

  184. Groblewski, T. et al. Peripherally-acting CB1-CB2 agonists for pain: do they still hold promise? Proceedings of the 20th Annual Symposium of the International Cannabinoid Research Society (2010).

  185. Jouanjus, E. et al. Cannabis use: signal of increasing risk of serious cardiovascular disorders. J. Am. Heart Assoc. 3, e000638 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Casier, I., Vanduynhoven, P., Haine, S., Vrints, C. & Jorens, P. G. Is recent cannabis use associated with acute coronary syndromes? An illustrative case series. Acta Cardiol. 69, 131–136 (2014).

    Article  PubMed  Google Scholar 

  187. Draz, E. I., Oreby, M. M., Elsheikh, E. A., Khedr, L. A. & Atlam, S. A. Marijuana use in acute coronary syndromes. Am. J. Drug Alcohol Abuse 43, 576–582 (2016).

    Article  PubMed  Google Scholar 

  188. Flesch, M. & Erdmann, E. Racing heart and angina pectoris in a 19-year-old male. Possibly the result of cannabis smoking? [German]. MMW Fortschr. Med. 146, 16 (2004).

    PubMed  Google Scholar 

  189. Marchetti, D., Spagnolo, A., De Matteis, V., Filograna, L. & De Giovanni, N. Coronary thrombosis and marijuana smoking: a case report and narrative review of the literature. Drug Test. Anal. 8, 56–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Hodcroft, C. J., Rossiter, M. C. & Buch, A. N. Cannabis-associated myocardial infarction in a young man with normal coronary arteries. J. Emerg. Med. 47, 277–281 (2014).

    Article  PubMed  Google Scholar 

  191. Mittleman, M. A., Lewis, R. A., Maclure, M., Sherwood, J. B. & Muller, J. E. Triggering myocardial infarction by marijuana. Circulation 103, 2805–2809 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Frost, L., Mostofsky, E., Rosenbloom, J. I., Mukamal, K. J. & Mittleman, M. A. Marijuana use and long-term mortality among survivors of acute myocardial infarction. Am. Heart J. 165, 170–175 (2013).

    Article  PubMed  Google Scholar 

  193. Arora, S., Goyal, H., Aggarwal, P. & Kukar, A. ST-segment elevation myocardial infarction in a 37-year-old man with normal coronaries — it is not always cocaine! Am. J. Emerg. Med. 30, 2091.e3–2091.e5 (2012).

    Google Scholar 

  194. Kocabay, G., Yildiz, M., Duran, N. E. & Ozkan, M. Acute inferior myocardial infarction due to cannabis smoking in a young man. J. Cardiovasc. Med. (Hagerstown) 10, 669–670 (2009).

    Article  Google Scholar 

  195. Cappelli, F., Lazzeri, C., Gensini, G. F. & Valente, S. Cannabis: a trigger for acute myocardial infarction? A case report. J. Cardiovasc. Med. (Hagerstown) 9, 725–728 (2008).

    Article  Google Scholar 

  196. Mukamal, K. J., Maclure, M., Muller, J. E. & Mittleman, M. A. An exploratory prospective study of marijuana use and mortality following acute myocardial infarction. Am. Heart J. 155, 465–470 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Ting, J. Y. Reversible cardiomyopathy associated with acute inhaled marijuana use in a young adult. Clin. Toxicol. (Phila.) 45, 432–434 (2007).

    Article  Google Scholar 

  198. Nogi, M., Fergusson, D. & Chiaco, J. M. Mid-ventricular variant takotsubo cardiomyopathy associated with Cannabinoid Hyperemesis Syndrome: a case report. Hawaii J. Med. Publ. Health 73, 115–118 (2014).

    Google Scholar 

  199. Singh, A. et al. Marijuana (cannabis) use is an independent predictor of stress cardiomyopathy in young men [abstract]. Circulation 134, A14100 (2016).

    Google Scholar 

  200. Kalla, A., Krishnamoorthy, P., Gopalakrishnan, A., Gang, J. & Figueredo, V. Cannabis use predicts risks of heart failure and cerebrovascular accidents: results from the national inpatient sample [abstract]. J. Am. Coll. Cardiol. 69, 1784 (2017).

    Article  Google Scholar 

  201. Lou, J. Y., Randhawa, M. S., Hornacek, D. & Bajzer, C. Images in vascular medicine. Spontaneous renal artery dissection in a cannabis user. Vasc. Med. 20, 379–380 (2015).

    Article  PubMed  Google Scholar 

  202. Charbonney, E., Sztajzel, J. M., Poletti, P. A. & Rutschmann, O. Paroxysmal atrial fibrillation after recreational marijuana smoking: another “holiday heart”? Swiss Med. Wkly 135, 412–414 (2005).

    PubMed  Google Scholar 

  203. Korantzopoulos, P. Marijuana smoking is associated with atrial fibrillation. Am. J. Cardiol. 113, 1085–1086 (2014).

    Article  PubMed  Google Scholar 

  204. Singh, D., Huntwork, M., Shetty, V., Sequeira, G. & Akingbola, O. Prolonged atrial fibrillation precipitated by new-onset seizures and marijuana abuse. Pediatrics 133, e443–e446 (2014).

    Article  PubMed  Google Scholar 

  205. Akins, D. & Awdeh, M. R. Marijuana and second-degree AV block. South. Med. J. 74, 371–373 (1981).

    Article  CAS  PubMed  Google Scholar 

  206. Pratap, B. & Korniyenko, A. Toxic effects of marijuana on the cardiovascular system. Cardiovasc. Toxicol. 12, 143–148 (2012).

    Article  PubMed  Google Scholar 

  207. Sanchez Lazaro, I. J., Almenar Bonet, L., Sancho-Tello, M. J. & Martinez-Dolz, L. Ventricular tachycardia due to marijuana use in a heart transplant patient. Rev. Esp. Cardiol. 62, 459–461 (2009).

    Article  PubMed  Google Scholar 

  208. Baranchuk, A., Johri, A. M., Simpson, C. S., Methot, M. & Redfearn, D. P. Ventricular fibrillation triggered by marijuana use in a patient with ischemic cardiomyopathy: a case report. Cases J. 1, 373 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Brancheau, D., Blanco, J., Gholkar, G., Patel, B. & Machado, C. Cannabis induced asystole. J. Electrocardiol. 49, 15–17 (2016).

    Article  PubMed  Google Scholar 

  210. Hartung, B., Kauferstein, S., Ritz-Timme, S. & Daldrup, T. Sudden unexpected death under acute influence of cannabis. Forensic Sci. Int. 237, e11–e13 (2014).

    Article  PubMed  Google Scholar 

  211. Reis, J. P. et al. Cumulative lifetime marijuana use and incident cardiovascular disease in middle age: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Am. J. Public Health 107, 601–606 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Falkstedt, D., Wolff, V., Allebeck, P., Hemmingsson, T. & Danielsson, A. K. Cannabis, tobacco, alcohol use, and the risk of early stroke: a population-based cohort study of 45 000 Swedish men. Stroke 48, 265–270 (2017).

    Article  PubMed  Google Scholar 

  213. Di Napoli, M. et al. Prior cannabis use is associated with outcome after intracerebral hemorrhage. Cerebrovasc. Dis. 41, 248–255 (2016).

    Article  PubMed  Google Scholar 

  214. Rumalla, K., Reddy, A. Y. & Mittal, M. K. Recreational marijuana use and acute ischemic stroke: a population-based analysis of hospitalized patients in the United States. J. Neurol. Sci. 364, 191–196 (2016).

    Article  PubMed  Google Scholar 

  215. Rumalla, K., Reddy, A. Y. & Mittal, M. K. Association of recreational marijuana use with aneurysmal subarachnoid hemorrhage. J. Stroke Cerebrovasc. Dis. 25, 452–460 (2016).

    Article  PubMed  Google Scholar 

  216. Behrouz, R. et al. Cannabis use and outcomes in patients with aneurysmal subarachnoid hemorrhage. Stroke 47, 1371–1373 (2016).

    Article  PubMed  Google Scholar 

  217. Hemachandra, D., McKetin, R., Cherbuin, N. & Anstey, K. J. Heavy cannabis users at elevated risk of stroke: evidence from a general population survey. Aust. N. Z. J. Public Health 40, 226–230 (2016).

    Article  PubMed  Google Scholar 

  218. Jouanjus, E., Raymond, V., Lapeyre-Mestre, M. & Wolff, V. What is the current knowledge about the cardiovascular risk for users of cannabis-based products? A systematic review. Curr. Atheroscler. Rep. 19, 26 (2017).

    Article  PubMed  Google Scholar 

  219. Wolff, V. & Jouanjus, E. Strokes are possible complications of cannabinoids use. Epilepsy Behav. 70, 355–363 (2017).

    Article  PubMed  Google Scholar 

  220. Han, K. H. et al. CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages. Cardiovasc. Res. 84, 378–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Jourdan, T. et al. Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc. Natl Acad. Sci. USA 111, E5420–E5428 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Pacher, P., Beckman, J. S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  223. Yankey, B. A. et al. Effect of marijuana use on cardiovascular and cerebrovascular mortality: a study using the National Health and Nutrition Examination Survey linked mortality file. Eur. J. Prev. Cardiol. http://dx.doi.org/10.1177/2047487317723212 (2017).

  224. Wang, X. et al. One minute of marijuana secondhand smoke exposure substantially impairs vascular endothelial function. J. Am. Heart Assoc. 5, e003858 (2016).

    PubMed  PubMed Central  Google Scholar 

  225. Mir, A., Obafemi, A., Young, A. & Kane, C. Myocardial infarction associated with use of the synthetic cannabinoid K2. Pediatrics 128, e1622–e1627 (2011).

    Article  PubMed  Google Scholar 

  226. Ibrahim, S., Al-Saffar, F. & Wannenburg, T. A. Unique case of cardiac arrest following K2 abuse. Case Rep. Cardiol. 2014, 120607 (2014).

    PubMed  PubMed Central  Google Scholar 

  227. Patton, A. L. et al. K2 toxicity: fatal case of psychiatric complications following AM2201 exposure. J. Forensic Sci. 58, 1676–1680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Davis, C. & Boddington, D. Teenage cardiac arrest following abuse of synthetic cannabis. Heart Lung Circ. 24, e162–e163 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Shah, M., Garg, J., Patel, B., Guthier, J. & Freudenberger, R. S. Can your heart handle the spice: a case of acute myocardial infarction and left ventricular apical thrombus. Int. J. Cardiol. 215, 129–131 (2016).

    Article  PubMed  Google Scholar 

  230. Labay, L. M. et al. Synthetic cannabinoid drug use as a cause or contributory cause of death. Forensic Sci. Int. 260, 31–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Orsini, J. et al. The wide and unpredictable scope of synthetic cannabinoids toxicity. Case Rep. Crit. Care 2015, 542490 (2015).

    PubMed  PubMed Central  Google Scholar 

  232. Atik, S. U. et al. Cardiovascular side effects related with use of synthetic cannabinoids “bonzai”: two case reports. Turk Pediatri Ars. 50, 61–64 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Obafemi, A. I., Kleinschmidt, K., Goto, C. & Fout, D. Cluster of acute toxicity from ingestion of synthetic cannabinoid-laced brownies. J. Med. Toxicol. 11, 426–429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Hermanns-Clausen, M. et al. Adverse effects after the use of JWH-210 — a case series from the EU Spice II plus project. Drug Test. Anal. 8, 1030–1038 (2016).

    Article  CAS  PubMed  Google Scholar 

  235. Hill, S. L. et al. Clinical toxicity following analytically confirmed use of the synthetic cannabinoid receptor agonist MDMB-CHMICA. A report from the Identification Of Novel psychoActive substances (IONA) study. Clin. Toxicol. (Phila.) 54, 638–643 (2016).

    Article  CAS  Google Scholar 

  236. Monte, A. A. et al. Characteristics and treatment of patients with clinical illness due to synthetic cannabinoid inhalation reported by medical toxicologists: a ToxIC Database study. J. Med. Toxicol. 13, 146–152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Andonian, D. O., Seaman, S. R. & Josephson, E. B. Profound hypotension and bradycardia in the setting of synthetic cannabinoid intoxication — a case series. Am. J. Emerg. Med. 35, 940.e5–940.e6 (2017).

    Article  Google Scholar 

  238. Centers for Disease Control and Prevention (CDC). Acute kidney injury associated with synthetic cannabinoid use — multiple states, 2012. MMWR Morb. Mortal. Wkly Rep. 62, 93–98 (2013).

  239. Zarifi, C. & Vyas, S. Spice-y kidney failure: a case report and systematic review of acute kidney injury attributable to the use of synthetic cannabis. Perm. J. http://dx.doi.org/10.7812/TPP/16-160 (2017).

  240. Maccarrone, M. et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol. Sci. 36, 277–296 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Mukhopadhyay, P. et al. CB1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br. J. Pharmacol. 160, 657–668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Barutta, F. et al. Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes 59, 1046–1054 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Jourdan, T. et al. Developmental role of macrophage cannabinoid-1 receptor signaling in type 2 diabetes. Diabetes 66, 994–1007 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Intramural Program of the NIAAA/NIH.

Author information

Authors and Affiliations

Authors

Contributions

P.P. and S.S. researched data for the article. All the authors discussed the content of the manuscript. P.P., S.S., and G.K. wrote the article, and P.P., G.H., T.H.S., and G.K. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Pal Pacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacher, P., Steffens, S., Haskó, G. et al. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 15, 151–166 (2018). https://doi.org/10.1038/nrcardio.2017.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing