Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Merging C–H and C–C bond cleavage in organic synthesis

Abstract

Metal-catalysed functionalization of a carbon–hydrogen bond can occur selectively even in the presence of ostensibly more reactive functional groups. Such conversions have changed our perceptions of organic chemistry because we can now consider a C–H bond as a functional group, the reactions of which are among the most attractive and powerful means to rapidly add complexity. Another versatile tool in organic synthesis is the metal-catalysed selective cleavage of C–C bonds. Applying both expedient methods in a tandem process would give us an ideal approach to synthesizing complex molecular architectures. The challenge lies in ensuring that the reactions do not interfere with each other; the simultaneous control of both C–H and C–C bond activations is the subject of this Review. The reactions that meet this challenge and enable a selective merger of C–H and C–C bond activations in a one-pot process are discussed. Their realization could afford sophisticated molecular fragments that are otherwise difficult to access.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The concept of merging C–H and C–C bond cleavage.
Figure 2: Norbornene mediates C–H and C–C bond cleavage of aryl iodides in the Catellani reaction.
Figure 3: Norbornene derivatives mediate C–H and C–C bond cleavage of arenes.
Figure 4: CO2 as a mediating group in Pd-catalysed C–H and C–C bond cleavage.
Figure 5: Alkene functionality as an internal mediator in tandem C–H and C–C bond cleavage.
Figure 6: Early work in the tandem activation of a cyclopropane derivative.
Figure 7: Tandem C–H and C–C cleavage in cyclopropane derivatives.
Figure 8: Tandem C–C and C–H cleavage in cyclopropanes.
Figure 9: Tandem C–H and C–C cleavage in cyclobutane derivatives.
Figure 10: Tandem C–C and C–H cleavage in cyclobutane derivatives.
Figure 11: Selected examples of tandem C–H and C–C cleavage in unstrained molecules.
Figure 12: Miscellaneous tandem C–H and C–C activation reactions.
Figure 13: Selected applications of tandem C–H and C–C cleavage reactions.

Similar content being viewed by others

References

  1. Trost, B. M. Selectivity: a key to synthetic efficiency. Science 219, 245–250 (1983).

    CAS  PubMed  Google Scholar 

  2. Baran, P. S., Maimone, T. J. & Richter, J. M. Total synthesis of marine natural products without using protecting groups. Nature 446, 404–408 (2007).

    CAS  Google Scholar 

  3. Young, I. S. & Baran, P. S. Protecting-group-free synthesis as an opportunity for invention. Nat. Chem. 1, 193–205 (2009).

    CAS  PubMed  Google Scholar 

  4. Wender, P. A. & Miller, B. L. Synthesis at the molecular frontier. Nature 460, 197–201 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bergman, R. G. Activation of alkanes with organotransition metal complexes. Science 223, 902–908 (1984).

    CAS  PubMed  Google Scholar 

  6. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

    CAS  PubMed  Google Scholar 

  7. Wencel-Delord, V. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    CAS  PubMed  Google Scholar 

  8. Ackermann, L. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C–H/Het–H bond functionalizations. Acc. Chem. Res. 47, 281–295 (2014).

    CAS  PubMed  Google Scholar 

  9. Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartwig, J. F. Evolution of C–H bond functionalization from methane to methodology. J. Am. Chem. Soc. 138, 2–24 (2016).

    CAS  PubMed  Google Scholar 

  12. Rybtchinski, B. & Milstein, D. Metal insertion into C–C bonds in solution. Angew. Chem. Int. Ed. 38, 870–883 (1999).

    Google Scholar 

  13. Murakami, M. Rhodium-catalyzed restructuring of carbon frameworks. Chem. Rec. 10, 326–331 (2010).

    CAS  PubMed  Google Scholar 

  14. Murakami, M. & Matsuda, T. Metal-catalysed cleavage of carbon–carbon bonds. Chem. Commun. 47, 1100–1105 (2011).

    CAS  Google Scholar 

  15. Seiser, T., Saget, T., Tran, D. N. & Cramer, N. Cyclobutanes in catalysis. Angew. Chem. Int. Ed. 50, 7740–7752 (2011).

    CAS  Google Scholar 

  16. Cramer, N. & Seiser, T. β-Carbon elimination from cyclobutanols: a clean access to alkylrhodium intermediates bearing a quaternary stereogenic center. Synlett 4, 449–460 (2011).

    Google Scholar 

  17. Souillart, L. & Cramer, N. Catalytic C–C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

    CAS  PubMed  Google Scholar 

  18. O’Reilly, M. E., Dutta, S. & Veige, A. S. β-Alkyl elimination: fundamental principles and some applications. Chem. Rev. 116, 8105–8145 (2016).

    PubMed  Google Scholar 

  19. Murakami, M. & Ito, Y. Cleavage of carbon–carbon single bonds by transition metals. Top. Organomet. Chem. 3, 97–127 (1999).

    CAS  Google Scholar 

  20. Gozin, M., Weisman, A., Ben-David, Y. & Milstein, D. Activation of a carbon–carbon bond in solution by transition-metal insertion. Nature 364, 699–701 (1993).

    CAS  Google Scholar 

  21. Masarwa, A. & Marek, I. Selectivity in metal-catalyzed carbon–carbon bond cleavage of alkylidenecyclopropanes. Chem. Eur. J. 16, 9712–9721 (2010).

    CAS  PubMed  Google Scholar 

  22. Marek, I., Masarwa, A., Delaye, P. O. & Leibeling, M. Selective carbon–carbon bond cleavage for the stereoselective synthesis of acyclic systems. Angew. Chem. Int. Ed. 54, 414–429 (2015).

    CAS  Google Scholar 

  23. Su, B., Cao, Z.-C. & Shi, Z.-J. Exploration of earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations. Acc. Chem. Res. 48, 886–896 (2015).

    CAS  PubMed  Google Scholar 

  24. Catellani, M., Frignani, F. & Rangoni, A. A complex catalytic cycle leading to a regioselective synthesis of o, o’-disubstituted vinylarenes. Angew. Chem. Int. Ed. 36, 119–122 (1997).

    CAS  Google Scholar 

  25. Cárdenas, D. J., Martín-Matute, B. & Echavarren, A. M. Aryl transfer between Pd(ii) centers or Pd(iv) intermediates in Pd-catalyzed domino reactions. J. Am. Chem. Soc. 128, 5033–5040 (2006).

    PubMed  Google Scholar 

  26. Maestri, G. et al. Of the ortho effect in palladium/norbornene-catalyzed reactions: a theoretical investigation. J. Am. Chem. Soc. 133, 8574–8585 (2011).

    CAS  PubMed  Google Scholar 

  27. Catellani, M., Motti, E. & Della Ca’, N. Catalytic sequential reactions involving palladacycle-directed aryl coupling steps. Acc. Chem. Res. 41, 1512–1152 (2008).

    CAS  PubMed  Google Scholar 

  28. Martins, A., Mariampillai, B. & Lautens, M. Synthesis in the key of Catellani: norbornene-mediated ortho C–H functionalization. Top. Curr. Chem. 292, 1–33 (2010).

    CAS  PubMed  Google Scholar 

  29. Ferraccioli, R. T. Palladium-catalyzed synthesis of carbo- and heterocycles through norbornene-mediated ortho C–H functionalization. Synthesis 45, 581–591 (2013).

    CAS  Google Scholar 

  30. Ye, J. & Lautens, M. Palladium-catalysed norbornene-mediated C–H functionalization of arenes. Nat. Chem. 7, 863–870 (2015).

    CAS  PubMed  Google Scholar 

  31. Della Ca’, N., Fontana, M., Motti, E. & Catellani, M. Pd/norbornene: a winning combination for selective aromatic functionalization via C–H bond activation. Acc. Chem. Res. 49, 1389–1400 (2016).

    PubMed  Google Scholar 

  32. Dong, Z. & Dong, G. Ortho versus ipso: site-selective Pd and norbornene-catalyzed arene C–H amination using aryl halides. J. Am. Chem. Soc. 135, 18350–18353 (2013).

    CAS  PubMed  Google Scholar 

  33. Shi, H., Babinski, D. J. & Ritter, T. Modular C–H functionalization cascade of aryl iodides. J. Am. Chem. Soc. 137, 3775–3778 (2015).

    CAS  PubMed  Google Scholar 

  34. Luo, B., Gao, J.-M. & Lautens, M. Palladium-catalyzed norbornene-mediated tandem amination/cyanation reaction: a method for the synthesis of ortho-aminated benzonitriles. Org. Lett. 18, 4166–4169 (2016).

    CAS  PubMed  Google Scholar 

  35. Sun, F. et al. Cleavage of the C(O)–S bond of thioesters by palladium/norbornene/copper cooperative catalysis: an efficient synthesis of 2-(arylthio)aryl ketones. J. Am. Chem. Soc. 138, 7456–7459 (2016).

    CAS  PubMed  Google Scholar 

  36. Wang, X.-C. et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature 519, 334–338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shen, P.-X., Wang, X.-C., Wang, P., Zhu, R.-Y. & Yu, J.-Q. Ligand-enabled meta-C–H alkylation and arylation using a modified norbornene.. J. Am. Chem. Soc. 137, 11574–11577 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, P. et al. Ligand-promoted meta-C–H amination and alkynylation. J. Am. Chem. Soc. 138, 14092–14099 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi, H., Wang, P., Suzuki, S., Farmer, M. E. & Yu, J.-Q. Ligand promoted meta-C–H chlorination of anilines and phenols. J. Am. Chem. Soc. 138, 14876–14879 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Luo, J., Preciado, S. & Larrosa, I. Overriding ortho–para selectivity via a traceless directing group relay strategy: the meta-selective arylation of phenols. J. Am. Chem. Soc. 136, 4109–4112 (2014).

    CAS  PubMed  Google Scholar 

  41. Simonetti, M. & Larrosa, I. Good things come in threes. Nat. Chem. 8, 1086–1088 (2016).

    CAS  PubMed  Google Scholar 

  42. Ye, J. et al. Remote C–H alkylation and C–C bond cleavage enabled by an in situ generated palladacycle. Nat. Chem. http://dx.doi.org/10.1038/nchem.2631 (2016).

  43. Grigg, R., Fretwell, P., Meerholtz, C. & Sridharan, V. Palladium catalysed synthesis of spiroindolines. Tetrahedron Lett. 50, 359–370 (1994).

    CAS  Google Scholar 

  44. Grigg, R. & Sricharan, V. Palladium catalysed cascade cyclisation-anion capture, relay switches and molecular queues. J. Organomet. Chem. 576, 65–87 (1999).

    CAS  Google Scholar 

  45. Periana, R. A. & Bergman, R. G. Rapid intramolecular rearrangement of hydrido(cyclopropyl)rhodium complex to a rhodacyclobutane. Independent synthesis of metallacycle by addition of hydride to the central carbon atom of a cationic rhodium π-allyl complex. J. Am. Chem. Soc. 106, 7272–7273 (1984).

    CAS  Google Scholar 

  46. Periana, R. A. & Bergman, R. G. C–C activation of organic small ring compounds by rhodacycloalkanes. Synthesis of metallacyclobutanes, including one with a tertiary M–C bond, by nucleophilic addition to π-allyl complexes. J. Am. Chem. Soc. 108, 7346–7355 (1986).

    CAS  Google Scholar 

  47. Colby, D. A., Tsai, A. S., Bergman, R. G. & Ellman, J. A. Rhodium catalyzed chelation-assisted C–H bond functionalization reactions. Acc. Chem. Res. 45, 814–825 (2012).

    CAS  PubMed  Google Scholar 

  48. Rousseaux, S., Liégault, B. & Fagnou, K. Palladium(0)-catalyzed cyclopropane C–H bond functionalization: synthesis of quinoline and tetrahydroquinoline derivatives. Chem. Sci. 3, 244–248 (2012).

    CAS  Google Scholar 

  49. Ladd, C. L., Sustac Roman, D. & Charette, A. B. Palladium-catalyzed ring-opening of cyclopropyl benzamides: synthesis of benzo[c]azepine-1-ones via C(sp3)–H functionalization. Tetrahedron 69, 4479–4487 (2013).

    CAS  Google Scholar 

  50. Pedroni, J., Saget, T., Donets, P. A. & Cramer, N. Enantioselective palladium(0)-catalyzed intramolecular cyclopropane functionalization: access to dihydroquinolones, dihydroisoquinolones and the BMS-791325 ring system. Chem. Sci. 6, 5164–5171 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Aloise, A. D., Layton, M. E. & Shair, M. D. Synthesis of cyclooctenones using intramolecular hydrocylation. J. Am. Chem. Soc. 122, 12610–12611 (2000).

    CAS  Google Scholar 

  52. Aïssa, C. & Fürstner, A. A rhodium-catalyzed C–H activation/cycloisomerization tandem. J. Am. Chem. Soc. 129, 14836–14837 (2007).

    PubMed  Google Scholar 

  53. Masarwa, A. et al. Merging allylic carbon–hydrogen and selective carbon–carbon bond activation. Nature 505, 199–203 (2014).

    CAS  PubMed  Google Scholar 

  54. Vasseur, A., Perrin, P., Eisenstein, O. & Marek, I. Remote functionalization of hydrocarbons with reversibility enhanced stereocontrol. Chem. Sci. 6, 2770–2776 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou, X., Yu, S., Qi, Z., Kong, L. & Li, X. Rhodium(iii)-catalyzed mild alkylation of (hetero)arenes with cyclopropanols via C–H activation and ring opening. J. Org. Chem. 81, 4869–4875 (2016).

    CAS  PubMed  Google Scholar 

  56. Zhou, X., Yu, S., Kong, L. & Li, X. Rhodium(iii)-catalyzed coupling of arenes with cyclopropanols via C–H activation and ring opening. ACS Catal. 6, 647–651 (2016).

    CAS  Google Scholar 

  57. Ackermann, L., Kozhushkov, S. I. & Yufit, D. S. Ruthenium-catalyzed hydroarylation of methylenecyclopropanes through C–H bond cleavage: scope and mechanism. Chem. Eur. J. 18, 12068–12077 (2012).

    CAS  PubMed  Google Scholar 

  58. Cui, S., Zhang, Y. & Wu, Q. Rh(iii)-catalyzed C–H activation/cycloaddition of benzamides and methylenecyclopropanes: divergence in ring formation. Chem. Sci. 4, 3421–3426 (2013).

    CAS  Google Scholar 

  59. Wu, J.-Q. et al. Rhodium(iii)-catalyzed C–H/C–C activation sequence: vinylcyclopropanes as versatile synthons in direct C–H allylation reactions. Chem. Commun. 51, 77–80 (2015).

    CAS  Google Scholar 

  60. Zell, D., Bu, Q., Feldt, M. & Ackermann, L. Mild C–H/C–C activation by Z-selective cobalt catalysis. Angew. Chem. Int. Ed. 55, 7408–7412 (2016).

    CAS  Google Scholar 

  61. Rosa, D. & Orellana, A. Synthesis of α-indanones via intramolecular direct arylation with cyclopropanol-derived homoenolates. Chem. Commun. 48, 1922–1924 (2012).

    CAS  Google Scholar 

  62. Crépin, D., Dawick, J. & Aïssa, C. Combined rhodium-catalyzed carbon–hydrogen activation and β-carbon elimination to access eight-membered rings. Angew. Chem. Int. Ed. 49, 620–623 (2010).

    Google Scholar 

  63. Chai, Z. & Rainey, T. J. Pd(ii)/Brønsted acid catalyzed enantioselective allylic C–H activation for the synthesis of spirocyclic rings. J. Am. Chem. Soc. 134, 3615–3618 (2012).

    CAS  PubMed  Google Scholar 

  64. Souillart, L. & Cramer, N. Exploitation of Rh(i)–Rh(iii) cycles in enantioselective C–C bond cleavages: access to β-tetralones and benzobicyclo[2.2.2]octanones. Chem. Sci. 5, 837–840 (2014).

    CAS  Google Scholar 

  65. Clark, G. R. & Thiensathit, S. A palladium-catalyzed rearrangement of 1-vinyl-1-cyclobutanols. Tetrahedron Lett. 26, 2503–2506 (1985).

    CAS  Google Scholar 

  66. Schweinitz, A., Chtchemelinine, A. & Orellana, A. Synthesis of benzodiquinanes via tandem palladium-catalyzed semipinacol rearrangement and direct arylation. Org. Lett. 13, 232–235 (2011).

    CAS  PubMed  Google Scholar 

  67. Matsuda, T., Makino, M. & Murakami, M. Rhodium-catalyzed addition/ring-opening reaction of arylboronic acids with cyclobutanones. Org. Lett. 6, 1257–1259 (2004).

    CAS  PubMed  Google Scholar 

  68. Matsuda, T., Shigeno, M., Maruyama, Y. & Murakami, M. Rhodium-catalyzed reactions of cyclobutanones with alcohols and amines forming esters and amides. Chem. Lett. 36, 744–745 (2007).

    CAS  Google Scholar 

  69. Matsuda, T., Makino, M. & Murakami, M. Synthesis of seven-membered-ring ketones by arylative ring expansion of alkyne-substituted cyclobutanones. Angew. Chem. Int. Ed. 44, 4608–4611 (2005).

    CAS  Google Scholar 

  70. Matsuda, T., Shigeno, M., Makino, M. & Murakami, M. Enantioselective C–C bond cleavage creating chiral quaternary carbon centers. Org. Lett. 8, 3379–3381 (2006).

    CAS  PubMed  Google Scholar 

  71. Matsuda, T., Shigeno, M. & Murakami, M. Asymmetric synthesis of 3,4-dihydrocoumarins by rhodium-catalyzed reaction of 3-(2-hydroxyphenyl)cyclobutanones. J. Am. Chem. Soc. 129, 12086–12087 (2007).

    CAS  PubMed  Google Scholar 

  72. Seiser, T., Roth, O. A. & Cramer, N. Enantioselective synthesis of indanols from tert-cyclobutanols using a rhodium-catalyzed C–C/C–H activation sequence. Angew. Chem. Int. Ed. 48, 6320–6323 (2009).

    CAS  Google Scholar 

  73. Shigeno, M., Yamamoto, T. & Murakami, M. Stereoselective restructuring of 3-arylcyclobutanols into 1-indanols by sequential breaking and formation of carbon–carbon bonds. Chem. Eur. J. 15, 12929–12931 (2009).

    CAS  PubMed  Google Scholar 

  74. Seiser, T., Cathomen, G. & Cramer, N. Enantioselective construction of indanones from cyclobutanols using a rhodium-catalyzed C–C/C–H/C–C bond activation process. Synlett 2010, 1699–1703 (2010).

    Google Scholar 

  75. Masarwa, A., Weber, M. & Sarpong, R. Selective C–C and C–H bond activation/cleavage of pinene derivatives: synthesis of enantiopure cyclohexenone scaffolds and mechanistic insights. J. Am. Chem. Soc. 137, 6327–6334 (2015).

    CAS  PubMed  Google Scholar 

  76. Matsuda, T. & Yuihara, I. A rhodium(i)-catalysed formal intramolecular C–C/C–H bond metathesis. Chem. Commun. 51, 7393–7396 (2015).

    CAS  Google Scholar 

  77. Gooßen, L. J., Rodriguez, N. & Gooßen, K. Carboxylic acids as substrates in homogeneous catalysis. Angew. Chem. Int. Ed. 47, 3100–3120 (2008).

    Google Scholar 

  78. Dzik, W. I., Lange, P. P. & Gooßen, L. J. Carboxylates as sources of carbon nucleophiles and electrophiles: comparison of decarboxylative and decarbonylative pathways. Chem. Sci. 3, 2671–2678 (2012).

    CAS  Google Scholar 

  79. Pichette Drapeau, M. & Gooßen, L. J. Carboxylic acids as directing groups for C–H bond functionalization. Chem. Eur. J. 22, 18654–18677 (2016).

    CAS  PubMed  Google Scholar 

  80. Shi, X.-Y. et al. A convenient synthesis of N-aryl benzamides by rhodium-catalyzed ortho-amidation and decarboxylation of benzoic acids. Chem. Eur. J. 20, 1–5 (2014).

    Google Scholar 

  81. Shi, X.-Y. et al. Ru(ii)-catalyzed ortho-amidation and decarboxylation of aromatic acids: a versatile route to meta-substituted N-aryl benzamides. Sci. China Chem. 58, 1286–1292 (2015).

    CAS  Google Scholar 

  82. Cornella, J., Righi, M. & Larrosa, I. Carboxylic acids as traceless directing groups for formal meta-selective direct arylation. Angew. Chem. Int. Ed. 50, 9429–9432 (2011).

    CAS  Google Scholar 

  83. Phani Kumar, N. Y., Bechtoldt, A., Raghuvanshi, K. & Ackermann, L. Ruthenium(ii)-catalyzed decarboxylative C–H activation: versatile routes to meta-alkenylated arenes. Angew. Chem. Int. Ed. 55, 6929–6932 (2016).

    Google Scholar 

  84. Huang, L., Biafora, A., Zhang, G., Bragoni, V. & Gooßen, L. J. Regioselective C–H hydroarylation of internal alkynes with arenecarboxylates: carboxylates as deciduous directing groups. Angew. Chem. Int. Ed. 55, 6933–6937 (2016).

    CAS  Google Scholar 

  85. Zhang, J., Shrestha, R., Hartwig, J. F. & Zhao, P. A decarboxylative approach for regioselective hydroarylation of alkynes. Nat. Chem. 8, 1144–1151 (2016).

    CAS  PubMed  Google Scholar 

  86. Wang, C., Rakshit, S. & Glorius, F. Palladium-catalyzed intermolecular decarboxylative coupling of 2-phenylbenzoic acids with alkynes via C–H and C–C bond activation. J. Am. Chem. Soc. 132, 14006–14008 (2010).

    CAS  PubMed  Google Scholar 

  87. Voutchkova, A., Coplin, A., Leadbeater, N. E. & Crabtree, R. H. Palladium-catalyzed decarboxylative coupling of aromatic acids with aryl halides or unactivated arenes using microwave heating. Chem. Commun. 6312–6314 (2008).

  88. Peng Hu, P., Zhang, M., Jie, X. & Su, W. Palladium-catalyzed decarboxylative C–H bond arylation of thiophenes. Angew. Chem. Int. Ed. 51, 227–231 (2012).

    Google Scholar 

  89. Cornella, J., Lu, P. & Larrosa, I. Intermolecular decarboxylative direct C-3 arylation of indoles with benzoic acids. Org. Lett. 11, 5506–5509 (2009).

    CAS  PubMed  Google Scholar 

  90. Eschinazi, H. E. & Pines, H. Synthesis of apopinene by catalytic decarbonylation of myrtenal. J. Org. Chem. 24, 1369–1369 (1959).

    CAS  Google Scholar 

  91. Tsuji, J. & Ohno, K. Decarbonylation of aldehydes using rhodium complex. Tetrahedron Lett. 44, 3969–3971 (1965).

    Google Scholar 

  92. Fristrup, P., Kreis, M., Palmelund, A., Norrby, P.-O. & Madsen, R. The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: a combined experimental and theoretical study. J. Am. Chem. Soc. 130, 5206–5215 (2008).

    CAS  PubMed  Google Scholar 

  93. Dermenci, A. & Dong, G. Decarbonylative C–C bond forming reactions mediated by transition metals. Sci. China Chem. 56, 685–701 (2013).

    CAS  Google Scholar 

  94. Guo, X., Wang, J. & Li, C.-J. An olefination via ruthenium-catalyzed decarbonylative addition of aldehydes to terminal alkynes. J. Am. Chem. Soc. 131, 15092–15093 (2009).

    CAS  PubMed  Google Scholar 

  95. Shuai, Q., Yang, L., Guo, X., Baslé, O. & Li, C.-J. Rhodium-catalyzed oxidative C–H arylation of 2-arylpyridine derivatives via decarbonylation of aromatic aldehydes. J. Am. Chem. Soc. 132, 12212–12213 (2010).

    CAS  PubMed  Google Scholar 

  96. Franke, R., Selent, D. & Börner, A. Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).

    CAS  PubMed  Google Scholar 

  97. Prince, R. H. & Raspin, K. A. Olefin formation from saturated aldehydes and acids by reaction with ruthenium and rhodium complexes. Chem. Commun. 1996, 156–157 (1966).

    Google Scholar 

  98. McCombs, C. A. & Foster, C. H. Dehydroformylation of steroidal aldehydes. US Patent 4272444 A (1981).

  99. Goto, Y., Wada, S., Morishima, I. & Watanabe, Y. Reactivity of peroxoiron(iii) porphyrin complexes: models for deformylation reactions catalyzed by cytochrome P-450. J. Inorg. Biochem. 69, 241–247 (1998).

    CAS  Google Scholar 

  100. Murphy, S. K., Park, J.-W., Cruz, F. A. & Dong, V. M. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science 347, 56–60 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kusumoto, S., Tatsuki, T. & Nozaki, K. The retro-hydroformylation reaction. Angew. Chem. Int. Ed. 54, 8458–8461 (2015).

    CAS  Google Scholar 

  102. Xia, Y., Lu, G., Liu, P. & Dong, G. Catalytic activation of carbon–carbon bonds in cyclopentenones. Nature 539, 546–550 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, D.-Y., Kim, I.-J. & Jun, C.-H. Synthesis of cycloalkanones from dienes and allylamines through C–H and C–C bond activation catalyzed by a rhodium(i) complex. Angew. Chem. Int. Ed. 41, 3031–3033 (2002).

    CAS  Google Scholar 

  104. Sun, M., Shen, G. & Bao, W. Regioselective cleavage of unstrained C–C bond and C–H bond: palladium–copper catalyzed deacetophenonylative arylation of coumarin derivatives. Adv. Synth. Catal. 354, 3468–3474 (2012).

    CAS  Google Scholar 

  105. Sui, X., Zhu, R., Li, G., Ma, X. & Gu, Z. Pd-catalyzed chemoselective Catellani ortho-arylation of iodopyrroles: rapid total synthesis of rhazinal. J. Am. Chem. Soc. 135, 9318–9321 (2013).

    CAS  PubMed  Google Scholar 

  106. Dong, Z., Wang, J., Ren, Z. & Dong, G. Ortho C–H acylation of aryl iodides by palladium/norbornene catalysis. Angew. Chem. Int. Ed. 54, 12664–12668 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Research Council under the Seventh Framework Programme of the European Community (ERC grant agreement number 338912). I.M. holds the Sir Michael and Lady Sobell Academic Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilan Marek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nairoukh, Z., Cormier, M. & Marek, I. Merging C–H and C–C bond cleavage in organic synthesis. Nat Rev Chem 1, 0035 (2017). https://doi.org/10.1038/s41570-017-0035

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing