Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the MacAB–TolC ABC-type tripartite multidrug efflux pump

Abstract

The MacA–MacB–TolC assembly of Escherichia coli is a transmembrane machine that spans the cell envelope and actively extrudes substrates, including macrolide antibiotics and polypeptide virulence factors. These transport processes are energized by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. We present an electron cryo-microscopy structure of the ABC-type tripartite assembly at near-atomic resolution. A hexamer of the periplasmic protein MacA bridges between a TolC trimer in the outer membrane and a MacB dimer in the inner membrane, generating a quaternary structure with a central channel for substrate translocation. A gating ring found in MacA is proposed to act as a one-way valve in substrate transport. The MacB structure features an atypical transmembrane domain with a closely packed dimer interface and a periplasmic opening that is the likely portal for substrate entry from the periplasm, with subsequent displacement through an allosteric transport mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A pseudo-atomic model for the MacAB–TolC pump.
Figure 2: Structure of MacB.
Figure 3: Interactions between MacA and MacB.

Similar content being viewed by others

References

  1. Kobayashi, N., Nishino, K. & Yamaguchi, A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J. Bacteriol. 183, 5639–5644 (2001).

    Article  CAS  Google Scholar 

  2. Vallet-Gely, I. et al. Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl. Environ. Microbiol. 76, 910–921 (2010).

    Article  CAS  Google Scholar 

  3. Cho, H. & Kang, H. The PseEF efflux system is a virulence factor of Pseudomonas syringae pv. syringae. J. Microbiol. 50, 79–90 (2012).

    Article  CAS  Google Scholar 

  4. Turlin, E. et al. Protoporphyrin (PPIX) efflux by the MacAB–TolC pump in Escherichia coli. Microbiologyopen 3, 849–859 (2014).

    Article  CAS  Google Scholar 

  5. Yamanaka, H., Kobayashi, H., Takahashi, E. & Okamoto, K. MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. J. Bacteriol. 190, 7693–7698 (2008).

    Article  CAS  Google Scholar 

  6. Lu, S. & Zgurskaya, H. I. MacA, a periplasmic membrane fusion protein of the macrolide transporter MacAB–TolC, binds lipopolysaccharide core specifically and with high affinity. J. Bacteriol. 195, 4865–4872 (2013).

    Article  CAS  Google Scholar 

  7. Lu, S. & Zgurskaya, H. I. Role of ATP binding and hydrolysis in assembly of MacAB–TolC macrolide transporter. Mol. Microbiol. 86, 1132–1143 (2012).

    Article  CAS  Google Scholar 

  8. Tikhonova, E. B., Devroy, V. K., Lau, S. Y. & Zgurskaya, H. I. Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB. Mol. Microbiol. 63, 895–910 (2007).

    Article  CAS  Google Scholar 

  9. Dawson, R. J. P. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006).

    Article  CAS  Google Scholar 

  10. Ward, A., Reyes, C. L., Yu, J., Roth, C. B. & Chang, G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc. Natl Acad. Sci. USA 104, 19005–19010 (2007).

    Article  CAS  Google Scholar 

  11. Gutmann, D. A. P., Ward, A., Urbatsch, I. L., Chang, G. & van Veen, H. W. Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1. Trends Biochem. Sci. 35, 36–42 (2010).

    Article  CAS  Google Scholar 

  12. Doshi, R., Woebking, B. & van Veen, H. W. Dissection of the conformational cycle of the multidrug/lipidA ABC exporter MsbA. Proteins 78, 2867–2872 (2010).

    Article  CAS  Google Scholar 

  13. Choudhury, H. G. et al. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc. Natl Acad. Sci. USA 111, 9145–9150 (2014).

    Article  CAS  Google Scholar 

  14. Lee, J.-Y. et al. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533, 561–564 (2016).

    Article  CAS  Google Scholar 

  15. Aittoniemi, J. et al. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos. Trans. R. Soc. B 364, 257–267 (2009).

    Article  CAS  Google Scholar 

  16. Locher, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23, 487–493 (2016).

    Article  CAS  Google Scholar 

  17. Perez, C. et al. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524, 433–438 (2015).

    Article  CAS  Google Scholar 

  18. Khare, D., Oldham, M. L., Orelle, C., Davidson, A. L. & Chen, J. Alternating access in maltose transporter mediated by rigid-body rotations. Mol. Cell 33, 528–536 (2009).

    Article  CAS  Google Scholar 

  19. Woo, J.-S., Zeltina, A., Goetz, B. A. & Locher, K. P. X-ray structure of the Yersinia pestis heme transporter HmuUV. Nat. Struct. Mol. Biol. 19, 1310–1315 (2012).

    Article  CAS  Google Scholar 

  20. Korkhov, V. M., Mireku, S. A. & Locher, K. P. Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature 490, 367–372 (2012).

    Article  CAS  Google Scholar 

  21. Song, S., Kim, J.-S., Lee, K. & Ha, N.-C. Molecular architecture of the bacterial tripartite multidrug efflux pump focusing on the adaptor bridging model. J. Microbiol. 53, 355–364 (2015).

    Article  CAS  Google Scholar 

  22. Zgurskaya, H. I., Weeks, J. W., Ntreh, A. T., Nickels, L. M. & Wolloscheck, D. Mechanism of coupling drug transport reactions located in two different membranes. Front. Microbiol. 6, 100 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Du, D., van Veen, H. W. & Luisi, B. F. Assembly and operation of bacterial tripartite multidrug efflux pumps. Trends Microbiol. 23, 311–319 (2015).

    Article  CAS  Google Scholar 

  24. Yamanaka, H., Izawa, H. & Okamoto, K. Carboxy-terminal region involved in activity of Escherichia coli TolC. J. Bacteriol. 183, 6961–6964 (2001).

    Article  CAS  Google Scholar 

  25. Du, D. et al. Structure of the AcrAB–TolC multidrug efflux pump. Nature 509, 512–515 (2014).

    Article  CAS  Google Scholar 

  26. Daury, L. et al. Tripartite assembly of RND multidrug efflux pumps. Nat. Commun. 7, 10731 (2016).

    Article  CAS  Google Scholar 

  27. Kim, J.-S. et al. Structure of the tripartite multidrug efflux pump AcrAB–TolC suggests an alternative assembly mode. Mol. Cells 38, 180–186 (2015).

    Article  Google Scholar 

  28. Lin, H. T. et al. Macb ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA. J. Biol. Chem. 284, 1145–1154 (2009).

    Article  CAS  Google Scholar 

  29. Xu, Y. et al. Crystal structure of the periplasmic region of MacB, a noncanonic ABC transporter. Biochemistry 48, 5218–5225 (2009).

    Article  CAS  Google Scholar 

  30. Yum, S. et al. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J. Mol. Biol. 387, 1286–1297 (2009).

    Article  CAS  Google Scholar 

  31. Calladine, C. R., Sharff, A. & Luisi, B. How to untwist an α-helix: structural principles of an α-helical barrel. J. Mol. Biol. 305, 603–618 (2001).

    Article  CAS  Google Scholar 

  32. Modali, S. D. & Zgurskaya, H. I. The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter. Mol. Microbiol. 81, 937–951 (2011).

    Article  CAS  Google Scholar 

  33. Bai, X., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. W. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 4, e11182 (2015).

    Article  Google Scholar 

  34. Jeong, H. et al. Pseudoatomic structure of the tripartite multidrug efflux pump AcrAB–TolC reveals the intermeshing cogwheel-like interaction between AcrA and TolC. Structure 24, 272–276 (2016).

    Article  CAS  Google Scholar 

  35. Xu, Y. et al. The tip region of the MacA α-hairpin is important for the binding to TolC to the Escherichia coli MacAB–TolC pump. Biochem. Biophys. Res. Commun. 394, 962–965 (2010).

    Article  CAS  Google Scholar 

  36. Xu, Y. et al. Functional implications of an intermeshing cogwheel-like interaction between TolC and MacA in the action of macrolide-specific efflux pump MacAB–TolC. J. Biol. Chem. 286, 13541–13549 (2011).

    Article  CAS  Google Scholar 

  37. Lee, M. et al. The α-barrel tip region of Escherichia coli TolC homologs of Vibrio vulnificus interacts with the MacA protein to form the functional macrolide-specific efflux pump MacAB–TolC. J. Microbiol. 51, 154–159 (2013).

    Article  CAS  Google Scholar 

  38. Dong, C. et al. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444, 226–229 (2006).

    Article  CAS  Google Scholar 

  39. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  Google Scholar 

  40. Meyerson, J. R. et al. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports. Sci. Rep. 4, 7084 (2014).

  41. Russo, C. J. & Passmore, L. A. Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).

    Article  CAS  Google Scholar 

  42. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  Google Scholar 

  43. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  Google Scholar 

  44. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  Google Scholar 

  45. Scheres, S. H. W. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015).

    Article  CAS  Google Scholar 

  46. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  Google Scholar 

  47. Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014).

    Article  Google Scholar 

  48. Scheres, S. H. W. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125–157 (2016).

    Article  CAS  Google Scholar 

  49. Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  Google Scholar 

  50. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  Google Scholar 

  51. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

    Article  Google Scholar 

  52. Hornak, V. et al. Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins 65, 712–725 (2006).

    Article  CAS  Google Scholar 

  53. Wang, J., Cieplak, P. & Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074 (2000).

    Article  CAS  Google Scholar 

  54. Case, D. A. et al. AMBER 12 (Univ. California, 2012).

    Google Scholar 

  55. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  56. Joung, I. S. & Cheatham, T. E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008).

    Article  CAS  Google Scholar 

  57. Grubmüller, H., Heymann, B. & Tavan, P. Ligand binding: molecular mechanics calculation of the streptavidin–biotin rupture force. Science 271, 997–999 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust (to B.F.L.), the Human Frontiers Science Program (to B.F.L., H.W.v.V. and S.M.), a Marie Curie International Outgoing Fellowship (to A.W.P.F.), the UK Medical Research Council (MC_UP_A025_1013, to S.H.W.S.), a Wellcome Trust ISSF award (grant no. WT097818MF), the Scottish Universities’ Physics Alliance (to U.Z. and S.L.) and the MRC Mitochondrial Biology Unit (grant no. U105663141). A.N. is the recipient of a Herchel–Smith Scholarship. The authors thank J. Skepper for help using the EM microscope and the imaging facility at Cambridge University, H. Zhou for providing access to the electron microscope at the University of California at Los Angeles, J. Grimmett and T. Darling for support with high-performance computing at the MRC Laboratory of Molecular Biology, S. Rankin for help with computing on the High-Performance Computing System at the University of Cambridge, and L. Packman for mass spectrometry analyses. The authors thank the staff of the Diamond Light Source for access to the eBIC facility. The EM maps have been deposited in the Electron Microscopy Databank.

Author information

Authors and Affiliations

Authors

Contributions

D.D., B.F.L. and S.H.W.S. designed the project. D.D. purified the fusion and disulfide-linkage-stabilized MacAB–TolC complexes. D.D., A.W.P.F., X.C.B. and J.N.B. obtained and analysed the single-particle cryo-EM data. U.O. and S.M. built the homology model of MacB. D.D. and B.F.L. devised a model of MacAB–TolC based on the cryo-EM map. A.N. and H.W.v.V. conducted MIC assays on the MacAB–TolC pump. S.L. and U.Z. carried out molecular dynamics simulations of MacA. D.D., B.F.L. and S.H.W.S. wrote the paper. All authors contributed to editing the manuscript.

Corresponding authors

Correspondence to Sjors H. W. Scheres, Ben F. Luisi or Dijun Du.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–14. (PDF 5660 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzpatrick, A., Llabrés, S., Neuberger, A. et al. Structure of the MacAB–TolC ABC-type tripartite multidrug efflux pump. Nat Microbiol 2, 17070 (2017). https://doi.org/10.1038/nmicrobiol.2017.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing