Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection

Abstract

Identifying genes required by pathogens during infection is critical for antimicrobial development. Here, we use a Monte Carlo simulation-based method to analyse high-throughput transposon sequencing data to determine the role of infection site and co-infecting microorganisms on the in vivo ‘essential’ genome of Staphylococcus aureus. We discovered that co-infection of murine surgical wounds with Pseudomonas aeruginosa results in conversion of 25% of the in vivo S. aureus mono-culture essential genes to non-essential. Furthermore, 182 S. aureus genes are uniquely essential during co-infection. These ‘community dependent essential’ (CoDE) genes illustrate the importance of studying pathogen gene essentiality in polymicrobial communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The S. aureus in vivo essential genome in three monoculture infections and during co-infection with P. aeruginosa.
Figure 2: Confirmation of S. aureus mutant Tn-seq phenotypes.

Similar content being viewed by others

References

  1. Lewis, K. Nat. Rev. Drug Discov. 12, 371–387 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Le Breton, Y. et al. Sci. Rep. 5, 9838 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Proc. Natl Acad. Sci. USA 112, 4110–4115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Umland, T. C. et al. mBio 3, e00113-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Opijnen, T. & Camilli, A. Nat. Rev. Microbiol. 11, 435–442 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Turner, K. H. et al. PLoS Genet. 10, e1004518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Valentino, M. D. et al. mBio 5, e01729-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wilde, A. D. et al. PLoS Pathog. 11, e1005341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stacy, A., McNally, L., Darch, S. E., Brown, S. P. & Whiteley, M. Nat. Rev. Microbiol. 14, 93–105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chambers, H. F. & Deleo, F. R. Nat. Rev. Microbiol. 7, 629–641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lowy, F. D. N. Engl. J. Med. 339, 520–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, A. G., DeDent, A. C., Schneewind, O. & Missiakas, D. Trends Microbiol. 19, 225–232 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gjødsbøl, K. et al. Int. Wound J. 3, 225–231 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Madsen, S. M., Westh, H., Danielsen, L. & Rosdahl, V. T. APMIS 104, 895–899 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Powell, J. E., Leonard, S. P., Kwong, W. K., Engel, P. & Moran, N. A. Proc. Natl Acad. Sci. USA 113, 13887–13892 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zomer, A., Burghout, P., Bootsma, H. J., Hermans, P. W. & van Hijum, S. A. PLoS ONE 7, e43012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dalton, T. et al. PLoS ONE 6, e27317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korgaonkar, A., Trivedi U., Rumbaugh K. P. & Whiteley M. Proc. Natl Acad. Sci. USA 110, 1059–1064 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Fazli, M. et al. J. Clin. Microbiol. 47, 4084–4089 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gottrup, F. Wound Repair Regen. 12, 129–133 (2004).

    Article  PubMed  Google Scholar 

  21. Anderson, M., Chen, Y. H., Butler, E. K. & Missiakas, D. M. J. Bacteriol. 193, 1583–1589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao, Z., Casabona, M. G., Kneuper, H., Chalmers, J. D. & Palmer, T. Nat. Microbiol. 2, 16183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun, Y., Dowd, S. E., Smith, E., Rhoads, D. D. & Wolcott, R. D. Wound Repair Regen. 16, 805–813 (2008).

    Article  PubMed  Google Scholar 

  24. DeLeon, S. et al. Infect. Immun. 82, 4718–4728 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Welch, M. J. L., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E. & Borisy, G. G. Proc. Natl Acad. Sci. USA 113, E791–E800 (2016).

    Article  Google Scholar 

  26. Ramsey, M. M., Rumbaugh, K. P., Whiteley, M. & Sullam, P. M. PLoS Pathog. 7, e1002012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stacy, A., Fleming, D., Lamont, R. J., Rumbaugh, K. P. & Whiteley, M. mBio 7, e00782-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gallagher, L. A., Shendure, J. & Manoil, C. mBio 2, e00315-10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Olson, M. E. in The Genetic Manipulation of Staphylococci 69–74 (Springer, 2015).

    Google Scholar 

  30. Zhang, X. et al. PLoS Genet. 8, e1002804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reyes, O. et al. Gene 107, 61–68 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Ferrieres, L. et al. J. Bacteriol. 192, 6418–6427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mintz, K. P. Microbiology 150, 2677–2688 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Watters, C. et al. Med. Microbiol. Immunol. 202, 131–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Murray, J. L., Kwon, T., Marcotte, E. M. & Whiteley, M. mBio 6, e01603-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Klein, B. A. et al. BMC Genomics 13, 578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin, M. EMBnet 17, 10–12 (2011).

    Article  Google Scholar 

  38. Love, M. I., Huber, W. & Anders, S. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fraley, C. & Raftery, A. E. J. Am. Stat. Assoc. 97, 611–631 (2002).

    Article  Google Scholar 

  40. Oliveros, J. C. VENNY. An interactive tool for comparing lists with Venn's diagrams (BioinfoGP, 2007–2015); http://bioinfogp.cnb.csic.es/tools/venny/index.html

  41. Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH, grants R01GM116547-01A1 and 1R01DE023193-01 to M.W.) and a grant from Human Frontiers Science (to M.W.). C.B.I. is supported by postdoctoral fellowship IBBERS16F0 from the Cystic Fibrosis Foundation. Contributions by M.S.G. were supported by PHS grant AI107248 and the Harvard-wide Program on Antibiotic Resistance (AI083214). A.S. is supported by a predoctoral fellowship from the NIH (F31DE024931). The authors thank M. Ramsey for generating pMR361-K, K. Michie for assistance with the chronic surgical wound experiments, S. Leonard for computational assistance and D. Cornforth for discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.B.I., A.S., K.R. and M.W. designed experiments. C.B.I., A.S. and M.W. analysed data. C.B.I., A.S. and D.F. performed experiments. J.L.D. prepared sequencing libraries. M.S.G. provided S. aureus HG003 transposon library and provided the raw data from previous studies7,8 included in the analysis. C.B.I., A.S., J.L.D., M.S.G., K.R. and M.W. wrote the paper.

Corresponding author

Correspondence to Marvin Whiteley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–3, Supplementary Tables 2 and 3, Supplementary References (PDF 766 kb)

Supplementary Table 1

The essential genes for S. aureus and A. actinomycetemcomitans. (XLSX 851 kb)

Supplementary Table 4

Sequencing data for each replicate in this study. (XLSX 9 kb)

Supplementary Table 5

A list of all of the ‘TA’ dinucleotide positions in the S. aureus NCTC8325 reference genome. (XLSX 2454 kb)

Supplementary Table 6

A list of all of the ‘TA’ dinucleotide positions in the A. actinomycetemcomitans strain 624 reference genome. (XLSX 1259 kb)

Supplementary Table 7

Homologues in S. aureus strain NCTC8325 and S. aureus strain USA300_FPR3757 for the transposon mutants used in this study. (XLSX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibberson, C., Stacy, A., Fleming, D. et al. Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nat Microbiol 2, 17079 (2017). https://doi.org/10.1038/nmicrobiol.2017.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.79

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology