Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Mini-Review

Assessing minimal residual disease (MRD) in leukemia: a changing definition and concept?

Abstract

The term minimal residual disease (MRD) in its currently accepted application refers to low-level disease detected in a whole variety of clinical situations. It is used to describe residual disease after suboptimal induction chemotherapy, but at the same time refers to the lowest levels of disease potentially compatible with cure or to molecularly defined relapse after long-term remission. This discussion intends to redefine MRD into some biologically relevant subcategories which may warrant their own independent terminology.

Bone Marrow Transplantation (2002) 29, 459–465. doi:10.1038/sj.bmt.1703388

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cassinat B, Zassadowski F, Balitrand N et al. Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR Leukemia 2000 14: 324 328

    Article  CAS  Google Scholar 

  2. Paietta E, Papenhausen P . Cytogenetic alterations and related molecular consequences in adult leukemia In: Wiernik PH (ed.) Adult Leukemias BC Decker: Hamilton, Canada 2001 pp 161 190

    Google Scholar 

  3. Malec M, Björklund E, Söderhäll S et al. Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL Leukemia 2001 15: 716 727

    Article  CAS  Google Scholar 

  4. Campana D, Coustan-Smith E . Detection of minimal residual disease in acute leukemia by flow cytometry Cytometry 1999 38: 139 152

    Article  CAS  Google Scholar 

  5. Jaffe ES, Harris NL, Stein H, Vardiman JW . World Health Organization Classification of Tumors: Tumors of Hematopoietic and Lymphoid Tissues IARC Press: Washington, DC 2001

    Google Scholar 

  6. Paietta E . Immunobiology of acute leukemia In: Wiernik P, Dutcher J, Goldman J, Kyle R (eds) Neoplastic Diseases of the Blood, 4th edn Cambridge University Press: Cambridge, UK 2001 (in press)

    Google Scholar 

  7. Venditti A, Buccisano F, Del Poeta G et al. Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia Blood 2000 96: 3948 3952

    CAS  PubMed  Google Scholar 

  8. San Miguel JF, Vidriales MB, Lôpez-Berges C et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification Blood 2001 98: 1746 1751

    Article  CAS  Google Scholar 

  9. Coustan-Smith E, Sancho J, Hancock ML et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia Blood 2000 96: 2691 2696

    CAS  PubMed  Google Scholar 

  10. Tobal K, Newton J, Macheta M et al. Molecular quantitation of minimal residual disease in acute myeloid leukemia with t(8;21) can identify patients in durable remission and predict clinical relapse Blood 2000 95: 815 819

    CAS  PubMed  Google Scholar 

  11. Marcucci G, Caligiuri MA, Döhner H et al. Quantification of CBFβ/MYH11 fusion transcript by real-time RT-PCR in patients with inv(16) acute myeloid leukemia Leukemia 2001 15: 1072 1080

    Article  CAS  Google Scholar 

  12. Tobal K, Moore H, Macheta M, Liu Yin JA . Monitoring minimal residual disease and predicting relapse in APL by quantitating PML-RARα transcripts with a sensitive competitive RT-PCR method Leukemia 2001 15: 1060 1065

    Article  CAS  Google Scholar 

  13. De Haas V, Verhagen OJHM, von dem Borne AEGKr et al. Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse already have the slowest rate of reduction during induction therapy Leukemia 2001 15: 134 140

    Article  CAS  Google Scholar 

  14. Faderl S, Talpaz M, Kantarjian HM, Estrov Z . Should polymerase chain reaction analysis to detect minimal residual disease in patients with chronic myelogenous leukemia be used in clinical decision making? Blood 1999 93: 2755 2759

    CAS  Google Scholar 

  15. LoCoco F, Diverio D, Falini B et al. Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia Blood 1999 94: 12 22

    Google Scholar 

  16. Morschhauser F, Cayuela JM, Martini S et al. Evaluation of minimal residual disease using reverse-transcription polymerase chain reaction in t(8;21) acute myeloid leukemia: a multicenter study of 51 patients J Clin Oncol 2000 18: 788 794

    Article  CAS  Google Scholar 

  17. Pui C-H, Campana D . New definition of remission in childhood acute lymphoblastic leukemia Leukemia 2000 14: 783 785

    Article  CAS  Google Scholar 

  18. Radich JP, Gooley T, Bryant E et al. The significance of bcr-abl molecular detection in chronic myeloid leukemia patients ‘late’, 18 months or more after transplantation Blood 2001 98: 1701 1707

    Article  CAS  Google Scholar 

  19. Van Dongen JJM, Macintyre EA, Gabert JA et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease Leukemia 1999 13: 1901 1928

    Article  CAS  Google Scholar 

  20. Coustan-Smith E, Sancho J, Behm FG et al. Comparative analysis of minimal residual disease in peripheral blood versus bone marrow in childhood acute lymphoblastic leukemia Blood 2001 98: 585a (Abstr. 2453)

    Google Scholar 

  21. Zhang JG, Lin F, Chase A et al. Comparison of genomic DNA and cDNA for detection of residual disease after treatment of chronic myeloid leukemia with allogeneic bone marrow transplantation Blood 1996 87: 2588 2593

    CAS  PubMed  Google Scholar 

  22. Moravcová J, Nádvorníková S, Sieglová Z et al. Do transcriptionally silent BCR/ABL cells persist in CML patients in molecular remission after stem cell transplantation Leukemia 2001 15: 997 999

    Article  Google Scholar 

  23. Brisco MJ, Sykes PJ, Hughes E et al. Comparison of methods for assessment of minimal residual disease in childhood B-lineage acute lymphoblastic leukemia Leukemia 2001 15: 385 390

    Article  CAS  Google Scholar 

  24. Van Wering ER, van der Linden-Schrever BEM, van der Velden VHJ et al. T-lymphocytes in bone marrow samples of children with acute lymphoblastic leukemia during and after chemotherapy might hamper PCR-based minimal residual disease studies Leukemia 2001 15: 1301 1315

    Article  CAS  Google Scholar 

  25. Lion T . Debate Round Table on RT-PCR controls: Concluding remarks and mini-review. Current recommendations for positive controls in RT-PCR assays Leukemia 2001 15: 1033 1037

    Article  CAS  Google Scholar 

  26. Liu Yin JA, Tobal K . Detection of minimal residual disease in acute myeloid leukemia: methodologies, clinical and biological significance Br J Haematol 1999 106: 578 590

    Article  Google Scholar 

  27. Orfao A, Schmitz G, Brando B et al. Clinically useful information provided by the flow cytometric immunophenotyping of hematological malignancies: current status and future directions Clin Chem 1999 45: 1708 1717

    CAS  PubMed  Google Scholar 

  28. Weir EG, Cowan K, LeBeau P, Borowitz MJ . A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection Leukemia 1999 13: 558 567

    Article  CAS  Google Scholar 

  29. Griesinger F, Pirò-Noack M, Kaib N et al. Leukemia-associated immunophenotypes (LAIP) are observed in 90% of adult and childhood acute lymphoblastic leukemia: detection in remission marrow predicts outcome Br J Haematol 1999 105: 241 255

    Article  CAS  Google Scholar 

  30. Lucio P, Gaipa G, van Lochem EG et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-staining Leukemia 2001 15: 1185 1192

    Article  CAS  Google Scholar 

  31. Paietta E, Kim H, Rowe JM et al. Prognostic significance of immunophenotyping and cytogenetics in adult acute lymphoblastic leukemia (ALL): interim analysis of ECOG/MRC phase III intergroup trial, E2993 Blood 2001 98: 841a (Abstr. 3494)

    Google Scholar 

  32. Vyas RC, Frankel SR, Agbor P et al. Probing the pathobiology of response to all-trans retinoic acid in acute promyelocytic leukemia: premature chromosome condensation/fluorescence in situ hybridization analysis Blood 1996 87: 218 226

    CAS  PubMed  Google Scholar 

  33. Hiorns LR, Min T, Swansbury GJ et al. Interstitial insertion of retinoic acid receptor-α gene in acute promyelocytic leukemia with normal chromosomes 15 and 17 Blood 1994 83: 2946 2951

    CAS  PubMed  Google Scholar 

  34. Sarriera JE, Albitar M, Estrov Z et al. Comparison of outcome in acute myelogenous leukemia patients with translocation (8;21) found by standard cytogenetic analysis and patients with AML1/ETO fusion transcript found only by PCR testing Leukemia 2001 15: 57 61

    Article  CAS  Google Scholar 

  35. Mrózek K, Prior TW, Edwards C et al. Comparison of cytogenetic and molecular genetic detection of t(8;21) and inv(16) in a prospective series of adults with de novo acute myeloid leukemia: a Cancer and Leukemia Group B study J Clin Oncol 2001 19: 2482 2492

    Article  Google Scholar 

  36. Uckun FM, Herman-Hatten K, Crotty M-L et al. Clinical significance of MLL-AF4 fusion transcript expression in the absence of a cytogenetically detectable t(4;11)(q21;q23) chromosomal translocation Blood 1998 92: 810 821

    CAS  PubMed  Google Scholar 

  37. Grimwade D . The pathogenesis of acute promyelocytic leukemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease Br J Haematol 1999 106: 591 613

    Article  CAS  Google Scholar 

  38. Kottaridis P, Gale RE, Frew ME et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials Blood 2001 98: 1752 1759

    Article  CAS  Google Scholar 

  39. Thiede Ch, Steudel Ch, Mohr B et al. Analysis of FLT3-activating mutations in 713 patients with acute myelogenous leukemia (AML): high prevalence in FAB-subtype M5 and identification of subgroups with poor prognosis Blood 2001 98: 717a (Abstr. 2994)

    Google Scholar 

  40. Fröhling S, Breitruck J, Schlenk R et al. FLT3 internal tandem duplications and survival in adult acute myeloid leukemia: analysis of 188 intensively treated patients Blood 2001 98: 717a (Abstr. 2995)

    Google Scholar 

  41. Stirewalt DL, Willman CL, Radich JP . Quantitative, real-time polymerase chain reactions for FLT3 internal tandem duplications are highly sensitive and specific Leukemia Res 2001 25: 1085 1088

    Article  CAS  Google Scholar 

  42. Kottaridis PD, Gale RE, Langabeer SE, Linch DC . Changes in the pattern of FLT3 mutations between diagnosis and relapse restricts their potential use as markers of minimal residual disease in patients with acute myeloid leukemia Blood 2001 98: 717a (Abstr. 2996)

    Article  Google Scholar 

  43. Campana D, Neale GAM, Coustan-Smith E, Pui C-H . Detection of minimal residual disease in acute lymphoblastic leukemia: the St Jude experience Leukemia 2001 15: 278 279

    Article  CAS  Google Scholar 

  44. Moreira J, Papaioannou M, Mortuza FY et al. Heterogeneity of VH-JH gene rearrangement patterns: an insight into the biology of B cell precursor ALL Leukemia 2001 15: 1527 1536

    Article  CAS  Google Scholar 

  45. Biondi A, Valsecchi MG, Seriu T et al. Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group Leukemia 2000 14: 1939 1943

    Article  CAS  Google Scholar 

  46. Van der Velden VHJ, Joosten SA, Willemse MJ et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia Leukemia 2001 15: 1485 1487

    Article  CAS  Google Scholar 

  47. Uzunel M, Mattsson J, Jaksch M et al. The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia Blood 2001 98: 1982 1984

    Article  CAS  Google Scholar 

  48. Seeger K, Kreuzer K-A, Lass U et al. Molecular quantification of response to therapy and remission status in TEL-AML1-positive childhood ALL by real-time reverse transcription polymerase chain reaction Cancer Res 2001 61: 2517 2522

    CAS  PubMed  Google Scholar 

  49. Hochhaus A, Reiter A, Saussele S et al. Molecular heterogeneity in complete cytogenetic responders after interferon-α therapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission Blood 2000 95: 62 66

    CAS  PubMed  Google Scholar 

  50. Druker BJ . New approaches to chronic myelogenous leukemia Clin Oncol Updates 2001 4: 1 8

    Google Scholar 

  51. Neale GAM, Pui C-H, Mahmoud HH et al. Molecular evidence for minimal residual bone marrow disease in children with ‘isolated’ extra-medullary relapse of T cell acute lymphoblastic leukemia Leukemia 1994 8: 768 775

    CAS  PubMed  Google Scholar 

  52. Goulden N, Langlands K, Steward C et al. PCR assessment of bone marrow status in ‘isolated’ extramedullary relapse of childhood B-precursor acute lymphoblastic leukemia Br J Haematol 1994 87: 282 285

    Article  CAS  Google Scholar 

  53. O'Reilly J, Meyer B, Baker D et al. Correlation of bone marrow minimal residual disease and apparent isolated extramedullary relapse in childhood acute lymphoblastic leukemia Leukemia 1995 15: 624 627

    Google Scholar 

  54. Elmaagacli AH, Beelen DW, Opalka B et al. The amount of BCR-ABL fusion transcripts detected by the real-time quantitative polymerase chain reaction methods in patients with Philadelphia chromosome positive chronic myeloid leukemia correlates with the disease stage Ann Hematol 2000 79: 424 431

    Article  CAS  Google Scholar 

  55. Hochhaus A, Weisser A, La Rosée P et al. Detection and quantification of residual disease in chronic myelogenous leukemia Leukemia 2000 14: 998 1005

    Article  CAS  Google Scholar 

  56. Olavarria E, Kanfer E, Szydlo R et al. Early detection of BCR-ABL transcripts by quantitative reverse transcriptase-polymerase chain reaction predicts outcome after allogeneic stem cell transplantation for chronic myeloid leukemia Blood 2001 97: 1560 1565

    Article  CAS  Google Scholar 

  57. Miyamoto T, Nagafuji K, Harada M et al. Quantitative analysis of AML1/ETO transcripts in peripheral blood stem cell harvests from patients with t(8;21) acute myelogenous leukemia Br J Haematol 1995 91: 132 138

    Article  CAS  Google Scholar 

  58. Seriu T, Yokota S, Nakao M et al. Prospective monitoring of minimal residual disease during the course of chemotherapy in patients with acute lymphoblastic leukemia, and detection of contaminating tumor cells in peripheral blood stem cells for autotransplantation Leukemia 1995 9: 615 623

    CAS  PubMed  Google Scholar 

  59. Reichle A, Rothe G, Krause S et al. Transplant characteristics: minimal residual disease and impaired megakaryocytic colony growth as sensitive parameters for predicting relapse in acute myeloid leukemia Leukemia 1999 13: 1227 1234

    Article  CAS  Google Scholar 

  60. Friedman AD . Leukemogenesis by CBF oncoproteins Leukemia 1999 13: 1932 1942

    Article  CAS  Google Scholar 

  61. Miyamoto T, Weissman IL, Akashi K . AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation Proc Natl Acad Sci USA 2000 97: 7521 7526

    Article  CAS  Google Scholar 

  62. Biernaux C, Loos M, Sels A et al. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals Blood 1995 86: 3118 3122

    CAS  PubMed  Google Scholar 

  63. Bose S, Deininger M, Gora-Tybor J et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biological significance and implications for the assessment of minimal residual disease Blood 1998 92: 3362 3367

    CAS  PubMed  Google Scholar 

  64. Quina AS, Gameiro P, Sá da Costa M et al. PML-RARA fusion transcripts in irradiated and normal hematopoietic cells Genes Chromos Cancer 2000 29: 266 275

    Article  CAS  Google Scholar 

  65. Schipper H, Goh CR, Wang TL . Shifting the cancer paradigm: must we kill to cure? J Clin Oncol 1995 13: 801 807

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paietta, E. Assessing minimal residual disease (MRD) in leukemia: a changing definition and concept?. Bone Marrow Transplant 29, 459–465 (2002). https://doi.org/10.1038/sj.bmt.1703388

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703388

Keywords

This article is cited by

Search

Quick links