Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Order parameters for the high-energy spectra of pulsars

Abstract

Neutron stars are a common compact endpoint of the life of stars. Magnetized and rotating neutron stars emit beams of radiation, which can only be seen when the observer and the beam stand aligned. Periodic recurrence of such alignment gives rise to pulsations and to the name ‘pulsar’ for the star itself. We present a physical model for the non-thermal emission of pulsars. With just four physical parameters, we fit the spectra of the γ- and X-ray pulsars across seven orders of magnitude in energy. We find that all detections can be encompassed in a continuous variation of the model parameters. The model explains the appearance of sub-exponential cutoffs at high energies as a natural consequence of synchro-curvature-dominated losses, unveiling that curvature-only emission plays a less significant role—if any—in the spectrum of most pulsars. The model also explains the flattening of the X-ray spectra at soft energies as a result of propagating particles being subject to synchrotron losses all along their trajectories. Using this model, we analyse how observations in γ-rays can predict the detectability of the pulsar in X-rays, and vice versa.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model concept.
Fig. 2: Results of the model fits for pulsars detected in both X-rays and γ-rays.
Fig. 3: Model fits for the pulsars detected only in X-rays.
Fig. 4: Properties of the trajectories of particles.
Fig. 5: Correlation of model parameters fitting the high-energy spectra of pulsars and expectations for X-ray detections.

Similar content being viewed by others

References

  1. Atwood, W. B. et al. The Large Area Telescope on the Fermi Gamma-ray Space Telescope mission. Astrophys. J. 697, 1071–1102 (2009).

    Article  ADS  Google Scholar 

  2. Abdo, A. A. et al. The second Fermi Large Area Telescope catalog of gamma-ray pulsars. Astrophys. J. Suppl. 208, 17 (2013).

    Article  ADS  Google Scholar 

  3. Kuiper, L. & Hermsen, W. The soft γ-ray pulsar population: a high-energy overview. Mon. Not. R. Astron. Soc. 449, 3827–3866 (2015).

    Article  ADS  Google Scholar 

  4. Ackermann, M. et al. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud. Science 350, 801–805 (2015).

    Article  ADS  Google Scholar 

  5. Kuiper, L. & Dekker, A. The Fermi LAT/GBM detection of pulsed gamma-ray emission from PSR J1846-0258 up to 100 MeV. The Astronomer’s Telegram 9077 (2016).

  6. Kuiper, L., Hermsen, W. & Dekker, A. The Fermi LAT detection of magnetar-like pulsar PSR J1846-0258 at high-energy gamma-rays: a genuine MeV pulsar like PSR B1509-58. Preprint at https://arxiv.org/abs/1709.00899 (2017).

  7. Cheng, K. S., Ho, C. & Ruderman, M. Energetic radiation from rapidly spinning pulsars. I—Outer magnetosphere gaps. II—VELA and Crab. Astrophys. J. 300, 500–539 (1986).

    Article  ADS  Google Scholar 

  8. Cheng, K. S., Ho, C. & Ruderman, M. Energetic radiation from rapidly spinning pulsars. II. VELA and Crab. Astrophys. J. 300, 522 (1986).

    Article  ADS  Google Scholar 

  9. Romani, R. W. Gamma-ray pulsars: radiation processes in the outer magnetosphere. Astrophys. J. 470, 469 (1996).

    Article  ADS  Google Scholar 

  10. Zhang, L. & Cheng, K. S. High-energy radiation from rapidly spinning pulsars with thick outer gaps. Astrophys. J. 487, 370 (1997).

    Article  ADS  Google Scholar 

  11. Hirotani, K. & Shibata, S. One-dimensional electric field structure of an outer gap accelerator—I. Gamma-ray production resulting from curvature radiation. Mon. Not. R. Astron. Soc. 308, 54–66 (1999).

    Article  ADS  Google Scholar 

  12. Muslimov, A. G. & Harding, A. K. Extended acceleration in slot gaps and pulsar high-energy emission. Astrophys. J. 588, 430–440 (2003).

    Article  ADS  Google Scholar 

  13. Dyks, J. & Rudak, B. Two-pole caustic model for high-energy light curves of pulsars. Astrophys. J. 598, 1201–1206 (2003).

    Article  ADS  Google Scholar 

  14. Kalapotharakos, C., Harding, A. K., Kazanas, D. & Contopoulos, I. Gamma-ray light curves from pulsar magnetospheres with finite conductivity. Astrophys. J. Lett. 754, L1 (2012).

    Article  ADS  Google Scholar 

  15. Philippov, A. A. & Spitkovsky, A. Ab-initio pulsar magnetosphere: particle acceleration in oblique rotators and high-energy emission modeling. Preprint at https://arxiv.org/abs/1707.04323 (2017).

  16. Kalapotharakos, C., Harding, A. K., Kazanas, D. & Brambilla, G. Fermi gamma-ray pulsars: understanding the high-energy emission from dissipative magnetospheres. Astrophys. J. 842, 80 (2017).

    Article  ADS  Google Scholar 

  17. Hirotani, K. Three-dimensional non-vacuum pulsar outer-gap model: localized acceleration electric field in the higher altitudes. Astrophys. J. Lett. 798, L40 (2015).

    Article  ADS  Google Scholar 

  18. Takata, J. & Cheng, K. S. X-Ray/GeV emissions from Crab-like pulsars in the LMC. Astrophys. J. 834, 4 (2017).

    Article  ADS  Google Scholar 

  19. Viganò, D., Torres, D. F., Hirotani, K. & Pessah, M. E. An assessment of the pulsar outer gap model—I. Assumptions, uncertainties, and implications on the gap size and the accelerating field. Mon. Not. R. Astron. Soc. 447, 2631–2648 (2015).

    Article  ADS  Google Scholar 

  20. Viganò, D., Torres, D. F., Hirotani, K. & Pessah, M. E. An assessment of the pulsar outer gap model—II. Implications for the predicted γ-ray spectra. Mon. Not. R. Astron. Soc. 447, 2649–2657 (2015).

    Article  ADS  Google Scholar 

  21. Viganò, D. & Torres, D. F. Modelling of the γ-ray pulsed spectra of Geminga, Crab, and Vela with synchro-curvature radiation. Mon. Not. R. Astron. Soc. 449, 3755–3765 (2015).

    Article  ADS  Google Scholar 

  22. Viganò, D., Torres, D. F. & Martín, J. A systematic synchro-curvature modelling of pulsar γ-ray spectra unveils hidden trends. Mon. Not. R. Astron. Soc. 453, 2599–2621 (2015).

    Article  ADS  Google Scholar 

  23. Cheng, K. S. & Zhang, J. L. General radiation formulae for a relativistic charged particle moving in curved magnetic field lines: the synchrocurvature radiation mechanism. Astrophys. J. 463, 271 (1996).

    Article  ADS  Google Scholar 

  24. Viganò, D., Torres, D. F., Hirotani, K. & Pessah, M. E. Compact formulae, dynamics and radiation of charged particles under synchro-curvature losses. Mon. Not. R. Astron. Soc. 447, 1164–1172 (2015).

    Article  ADS  Google Scholar 

  25. Chiang, J. & Romani, R. W. An outer gap model of high-energy emission from rotation-powered pulsars. Astrophys. J. 436, 754–761 (1994).

    Article  ADS  Google Scholar 

  26. McCann, A. A stacked analysis of 115 pulsars observed by the FERMI LAT. Astrophys. J. 804, 86 (2015).

    Article  ADS  Google Scholar 

  27. Wang, Y., Takata, J. & Cheng, K. S. Mechanism of the X-ray and soft gamma-ray emissions from high magnetic field pulsar: PSR B1509-58. Astrophys. J. 764, 51 (2013).

    Article  ADS  Google Scholar 

  28. Wang, Y., Ng, C. W., Takata, J., Leung, G. C. K. & Cheng, K. S. Emission mechanism of GeV-quiet soft gamma-ray pulsars: a case for peculiar geometry? Mon. Not. R. Astron. Soc. 445, 604–613 (2014).

    Article  ADS  Google Scholar 

  29. Harrison, F. A. et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103 (2013).

    Article  ADS  Google Scholar 

  30. Tatischeff, V. et al. The e-ASTROGAM gamma-ray space mission. Preprint at https://arxiv.org/abs/1608.03739 (2016).

  31. Moiseev, A. A. et al. Compton-Pair Production Space Telescope (ComPair) for MeV gamma-ray astronomy. Preprint at https://arxiv.org/abs/1508.07349 (2015).

  32. Zhang, S. N. et al. eXTP—Enhanced X-ray Timing and Polarization Mission. Preprint at https://arxiv.org/abs/1607.08823 (2016).

  33. Barcons, X. et al. Athena (Advanced Telescope for High ENergy Astrophysics) assessment study report for ESA Cosmic Vision 2015–2025. Preprint at https://arxiv.org/abs/1207.2745 (2012).

  34. Takata, J., Shibata, S., Hirotani, K. & Chang, H.-K. A two-dimensional electrodynamical outer gap model for γ-ray pulsars: γ-ray spectrum. Mon. Not. R. Astron. Soc. 366, 1310–1328 (2006).

    Article  ADS  Google Scholar 

  35. Avni, Y. Energy spectra of X-ray clusters of galaxies. Astrophys. J. 210, 642–646 (1976).

    Article  ADS  Google Scholar 

  36. Lampton, M., Margon, B. & Bowyer, S. Parameter estimation in X-ray astronomy. Astrophys. J. 208, 177–190 (1976).

    Article  ADS  Google Scholar 

  37. Li, J. et al. Observing and modelling the gamma-ray emission from pulsar/pulsar wind nebula complex PSR J0205+6449/3C 58. In 7th Int. Fermi Symp. 012 (2017).

  38. Abdo, A. A. et al. The vela pulsar: results from the first year of Fermi LAT observations. Astrophys. J. 713, 154–165 (2010).

    Article  ADS  Google Scholar 

  39. Pilia, M., Treves, A., Pellizzoni, A., Trois, A. & Motta, S. Observation of gamma-ray emission from PSR J2022+3842. The Astronomer’s Telegram 3466 (2011).

  40. Ohuchi, H., Arimoto, M., Yatsu, Y., Nakamori, T. & Kawai, N. Does PSR J2022+3842 emit gamma rays? 6th Fermi Symposium 2015 3246 (2015).

  41. Smith, D. >200 Gamma-ray pulsars with the Fermi satellite. In MODE Meeting: Pulsars and Their Environments. (Paris Observatory, 2016); http://mode.obspm.fr/pdf/Smith.pdf

  42. Acero, F. et al. Fermi Large Area Telescope third source catalog. Astrophys. J. Suppl. 218, 23 (2015).

    Article  ADS  Google Scholar 

  43. Pilia, M. et al. AGILE observations of the “Soft” gamma-ray pulsar PSR B1509-58. Astrophys. J. 723, 707–712 (2010).

    Article  ADS  Google Scholar 

  44. Abdo, A. A. et al. Detection of the energetic pulsar PSR B1509-58 and its pulsar wind nebula in MSH 15-52 using the Fermi-Large Area Telescope. Astrophys. J. 714, 927–936 (2010).

    Article  ADS  Google Scholar 

  45. Torres, D. F. et al. Time-dependent modeling of TeV-detected, young pulsar wind nebulae. J. High Energy Astrophys. 1, 31–62 (2014).

    Article  ADS  Google Scholar 

  46. Chen, G. et al. NuSTAR observations of the young, energetic radio pulsar PSR B1509-58. Astrophys. J. 817, 93 (2016).

    Article  ADS  Google Scholar 

  47. Ackermann, M. et al. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud. Science 350, 801–805 (2015).

    Article  ADS  Google Scholar 

  48. Lande, J. et al. Search for spatially extended Fermi Large Area Telescope sources using two years of data. Astrophys. J. 756, 5 (2012).

    Article  ADS  Google Scholar 

  49. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in FORTRAN. The Art of Scientific Computing. 2nd edn, (Cambridge Univ. Press, Cambridge, 1992).

    MATH  Google Scholar 

  50. Li, J., Torres, D. F., de Oña Wilhelmi, E., Rea, N. & Martin, J. Gamma-ray emission from PSR J0007+7303 using seven years of Fermi Large Area Telescope observations. Astrophys. J. 831, 19 (2016).

    Article  ADS  Google Scholar 

  51. Roberts, M. S. E., Romani, R. W. & Johnston, S. Multiwavelength studies of PSR J1420-6048, a young pulsar in the Kookaburra. Astrophys. J. Lett. 561, L187–L190 (2001).

    Article  ADS  Google Scholar 

  52. Pancrazi, B. et al. X-ray follow-up observations of the two γ-ray pulsars PSR J1459-6053 and PSR J1614-2230. Astron. Astrophys. 544, A108 (2012).

    Article  Google Scholar 

  53. Hessels, J. W. T. et al. Observations of PSR J2021+3651 and its X-ray pulsar wind nebula G75.2+0.1. Astrophys. J. 612, 389–397 (2004).

    Article  ADS  Google Scholar 

  54. McGowan, K. E. et al. XMM-Newton observations of PSR B1706-44. Astrophys. J. 600, 343–350 (2004).

    Article  ADS  Google Scholar 

  55. Mignani, R. P. et al. VLT and Suzaku observations of the Fermi pulsar PSR J1028-5819. Astron. Astrophys. 543, A130 (2012).

    Article  Google Scholar 

  56. Klingler, N. et al. Chandra observations of outflows from PSR J1509-5850. Astrophys. J. 828, 70 (2016).

    Article  ADS  Google Scholar 

  57. Gotthelf, E. V. & Bogdanov, S. NuSTAR hard X-ray observations of the energetic millisecond pulsars PSR B1821-24, PSR B1937+21, and PSR J0218 + 4232. Astrophys. J. 845, 159 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from grants AYA2015-71042-P and SGR 2014–1073, as well as the Centres de Recerca de Catalunya Programme of the Generalitat de Catalunya and Chinese Academy of Sciences grant 11473027. The author is grateful to L. Kuiper, H. An, D. Smith and J. Li for providing observational data, and to J. Li, A. Papitto, J. Pons and D. Viganò for comments.

Author information

Authors and Affiliations

Authors

Contributions

D.F.T. carried out all the work relating to this manuscript.

Corresponding author

Correspondence to Diego F. Torres.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Figures 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, D.F. Order parameters for the high-energy spectra of pulsars. Nat Astron 2, 247–256 (2018). https://doi.org/10.1038/s41550-018-0384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0384-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing