Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Well-defined nickel and palladium precatalysts for cross-coupling

Abstract

Transition metal-catalysed cross-coupling is one of the most powerful synthetic methods and has led to vast improvements in the synthesis of pharmaceuticals, agrochemicals and precursors for materials chemistry. A major advance in cross-coupling over the past 20 years is the utilization of well-defined, bench-stable Pd and Ni precatalysts that do not require the addition of free ancillary ligand, which can hinder catalysis by occupying open coordination sites on the metal. The development of precatalysts has resulted in new reactions and expanded substrate scopes, enabling transformations under milder conditions and with lower catalyst loadings. This Review highlights recent advances in the development of Pd and Ni precatalysts for cross-coupling, and provides a critical comparison between the state of the art in Pd- and Ni-based systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recent developments in palladacycle and PEPPSI precatalysts.
Figure 2: A summary of recent improvements to η3-allyl-type precatalysts.
Figure 3: Proposed catalytic pathways for bridging halide Pd(I) precatalysts and structural evidence for new Pd(0) precatalysts.
Figure 4: Types of electrophiles and nucleophiles that can be coupled with Ni precatalysts of the form [LnNiX2].
Figure 5: Structures of common Ni precatalysts based on oxidation state and supporting ligands.

Similar content being viewed by others

References

  1. Nicolaou, K. C., Bulger, P. G. & Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4442–4489 (2005).

    CAS  Google Scholar 

  2. Corbet, J.-P. & Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev. 106, 2651–2710 (2006).

    CAS  PubMed  Google Scholar 

  3. Magano, J. & Dunetz, J. R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 111, 2177–2250 (2011).

    CAS  PubMed  Google Scholar 

  4. Colacot, T. J. (ed.) New Trends in Cross-Coupling: Theory and Applications (Royal Society of Chemistry, 2015).

    Google Scholar 

  5. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Marion, N. & Nolan, S. P. Well-defined N-heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions. Acc. Chem. Res. 41, 1440–1449 (2008).

    CAS  PubMed  Google Scholar 

  7. Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki–Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Würtz, S. & Glorius, F. Surveying sterically demanding N-heterocyclic carbene ligands with restricted flexibility for palladium-catalyzed cross-coupling reactions. Acc. Chem. Res. 41, 1523–1533 (2008).

    PubMed  Google Scholar 

  9. Fu, G. C. The development of versatile methods for palladium-catalyzed coupling reactions of aryl electrophiles through the use of P(t-Bu)3 and PCy3 as ligands. Acc. Chem. Res. 41, 1555–1564 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Christmann, U. & Vilar, R. Monoligated palladium species as catalysts in cross-coupling reactions. Angew. Chem. Int. Ed. 44, 366–374 (2005).

    CAS  Google Scholar 

  11. Li, H., Johansson Seechurn, C. C. C. & Colacot, T. J. Development of preformed Pd catalysts for cross-coupling reactions, beyond the 2010 nobel prize. ACS Catal. 2, 1147–1164 (2012).

    CAS  Google Scholar 

  12. Han, F.-S. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 42, 5270–5298 (2013).

    CAS  PubMed  Google Scholar 

  13. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ananikov, V. P. Nickel: the “spirited horse” of transition metal catalysis. ACS Catal. 5, 1964–1971 (2015).

    CAS  Google Scholar 

  15. Ge, S. & Hartwig, J. F. Highly reactive, single-component nickel catalyst precursor for Suzuki–Miyuara cross-coupling of heteroaryl boronic acids with heteroaryl halides. Angew. Chem. Int. Ed. 51, 12837–12841 (2012). A report describing a Ni precatalyst operating at low loadings and mild conditions for the coupling of challenging heteroaryl substrates.

    CAS  Google Scholar 

  16. Mesganaw, T. & Garg, N. K. Ni- and Fe-catalyzed cross-coupling reactions of phenol derivatives. Org. Process Res. Dev. 17, 29–39 (2012).

    Google Scholar 

  17. Zhou, J. & Fu, G. C. Cross-couplings of unactivated secondary alkyl halides: room-temperature nickel-catalyzed Negishi reactions of alkyl bromides and iodides. J. Am. Chem. Soc. 125, 14726–14727 (2003).

    CAS  PubMed  Google Scholar 

  18. Netherton, M. R. & Fu, G. C. Nickel-catalyzed cross-couplings of unactivated alkyl halides and pseudohalides with organometallic compounds. Adv. Synth. Catal. 346, 1525–1532 (2004).

    CAS  Google Scholar 

  19. Zhou, J. & Fu, G. C. Suzuki cross-couplings of unactivated secondary alkyl bromides and iodides. J. Am. Chem. Soc. 126, 1340–1341 (2004).

    CAS  PubMed  Google Scholar 

  20. Powell, D. A. & Fu, G. C. Nickel-catalyzed cross-couplings of organosilicon reagents with unactivated secondary alkyl bromides. J. Am. Chem. Soc. 126, 7788–7789 (2004).

    CAS  PubMed  Google Scholar 

  21. Zultanski, S. L. & Fu, G. C. Nickel-catalyzed carbon–carbon bond-forming reactions of unactivated tertiary alkyl halides: Suzuki arylations. J. Am. Chem. Soc. 135, 624–627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dudnik, A. S. & Fu, G. C. Nickel-catalyzed coupling reactions of alkyl electrophiles, including unactivated tertiary halides, to generate carbon–boron bonds. J. Am. Chem. Soc. 134, 10693–10697 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Valente, C. et al. The development of bulky palladium NHC complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Ed. 51, 3314–3332 (2012).

    CAS  Google Scholar 

  24. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 nobel prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    CAS  Google Scholar 

  25. Gildner, P. G. & Colacot, T. J. Reactions of the 21st century: two decades of innovative catalyst design for palladium-catalyzed cross-couplings. Organometallics 34, 5497–5508 (2015).

    CAS  Google Scholar 

  26. Recho, J., Black, R. J. G., North, C., Ward, J. E. & Wilkes, R. D. Statistical DoE approach to the removal of palladium from active pharmaceutical ingredients (APIs) by functionalized silica adsorbents. Org. Process Res. Dev. 18, 626–635 (2014).

    CAS  Google Scholar 

  27. Egorova, K. S. & Ananikov, V. P. Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew. Chem. Int. Ed. 55, 12150–12162 (2016).

    CAS  Google Scholar 

  28. Biscoe, M. R., Fors, B. P. & Buchwald, S. L. A. New class of easily activated palladium precatalysts for facile C–N cross-coupling reactions and the low temperature oxidative addition of aryl chlorides. J. Am. Chem. Soc. 130, 6686–6687 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Düfert, M. A., Billingsley, K. L. & Buchwald, S. L. Suzuki–Miyaura cross-coupling of unprotected, nitrogen-rich heterocycles: substrate scope and mechanistic investigation. J. Am. Chem. Soc. 135, 12877–12885 (2013).

    PubMed  Google Scholar 

  30. Colombe, J. R., Bernhardt, S., Stathakis, C., Buchwald, S. L. & Knochel, P. Synthesis of solid 2-pyridylzinc reagents and their application in negishi reactions. Org. Lett. 15, 5754–5757 (2013).

    CAS  PubMed  Google Scholar 

  31. Yang, Y., Mustard, T. J. L., Cheong, P. H.-Y. & Buchwald, S. L. Palladium-catalyzed completely linear-selective Negishi cross-coupling of allylzinc halides with aryl and vinyl electrophiles. Angew. Chem. Int. Ed. 52, 14098–14102 (2013).

    CAS  Google Scholar 

  32. Yang, Y., Niedermann, K., Han, C. & Buchwald, S. L. Highly selective palladium-catalyzed cross-coupling of secondary alkylzinc reagents with heteroaryl halides. Org. Lett. 16, 4638–4641 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bhonde, V. R., O’Neill, B. T. & Buchwald, S. L. An improved system for the aqueous Lipshutz–Negishi cross-coupling of alkyl halides with aryl electrophiles. Angew. Chem. Int. Ed. 55, 1849–1853 (2016).

    CAS  Google Scholar 

  34. Park, N. H., Vinogradova, E. V., Surry, D. S. & Buchwald, S. L. Design of new ligands for the palladium-catalyzed arylation of α-branched secondary amines. Angew. Chem. Int. Ed. 54, 8259–8262 (2015).

    CAS  Google Scholar 

  35. Ruiz-Castillo, P., Blackmond, D. G. & Buchwald, S. L. Rational ligand design for the arylation of hindered primary amines guided by reaction progress kinetic analysis. J. Am. Chem. Soc. 137, 3085–3092 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, W. & Buchwald, S. L. Palladium-catalyzed N-arylation of iminodibenzyls and iminostilbenes with aryl- and heteroaryl halides. Chem. Eur. J. 22, 14186–14189 (2016).

    CAS  PubMed  Google Scholar 

  37. King, S. M. & Buchwald, S. L. Development of a method for the N-arylation of amino acid esters with aryl triflates. Org. Lett. 18, 4128–4131 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, S. M. & Buchwald, S. L. Regioselective 2-amination of polychloropyrimidines. Org. Lett. 18, 2180–2183 (2016).

    CAS  PubMed  Google Scholar 

  39. Senecal, T. D., Shu, W. & Buchwald, S. L. A. General, practical palladium-catalyzed cyanation of (hetero)aryl chlorides and bromides. Angew. Chem. Int. Ed. 52, 10035–10039 (2013).

    CAS  Google Scholar 

  40. Cohen, D. T. & Buchwald, S. L. Mild palladium-catalyzed cyanation of (hetero)aryl halides and triflates in aqueous media. Org. Lett. 17, 202–205 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheung, C. W. & Buchwald, S. L. Palladium-catalyzed hydroxylation of aryl and heteroaryl halides enabled by the use of a palladacycle precatalyst. J. Org. Chem. 79, 5351–5358 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheung, C. W. & Buchwald, S. L. Mild and general palladium-catalyzed synthesis of methyl aryl ethers enabled by the use of a palladacycle precatalyst. Org. Lett. 15, 3998–4001 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Friis, S. D., Skrydstrup, T. & Buchwald, S. L. Mild Pd-catalyzed aminocarbonylation of (hetero)aryl bromides with a palladacycle precatalyst. Org. Lett. 16, 4296–4299 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bruno, N. C., Tudge, M. T. & Buchwald, S. L. Design and preparation of new palladium precatalysts for C–C and C–N cross-coupling reactions. Chem. Sci. 4, 916–920 (2013). The design and synthesis of an active new palladacycle precatalyst incorporating the weakly coordinating mesylate anion.

    CAS  PubMed  Google Scholar 

  45. Bruno, N. C. & Buchwald, S. L. Synthesis and application of palladium precatalysts that accommodate extremely bulky di-tert-butylphosphino biaryl ligands. Org. Lett. 15, 2876–2879 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Feng, Z., Hu, W., Rom, W. N., Beland, F. A. & Tang, M. S. 4-Aminobiphenyl is a major etiological agent of human bladder cancer: evidence from its DNA binding spectrum in human p53 gene. Carcinogenesis 23, 1721–1727 (2002).

    CAS  PubMed  Google Scholar 

  47. Bruno, N. C., Niljianskul, N. & Buchwald, S. L. N-Substituted 2-aminobiphenylpalladium methanesulfonate precatalysts and their use in C–C and C–N cross-couplings. J. Org. Chem. 79, 4161–4166 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Organ, M. G., Chass, G. A., Fang, D.-C., Hopkinson, A. C. & Valente, C. Pd-NHC (PEPPSI) complexes: synthetic utility and computational studies into their reactivity. Synthesis 2008, 2776–2797 (2008).

    Google Scholar 

  49. Chartoire, A. et al. [Pd(IPr*)(cinnamyl)Cl]: an efficient pre-catalyst for the preparation of tetra-ortho-substituted biaryls by Suzuki–Miyaura cross-coupling. Chem. Eur. J. 18, 4517–4521 (2012).

    CAS  PubMed  Google Scholar 

  50. Hoi, K. H., Çalimsiz, S., Froese, R. D. J., Hopkinson, A. C. & Organ, M. G. Amination with pd-NHC complexes: rate and computational studies involving substituted aniline substrates. Chem. Eur. J. 18, 145–151 (2012).

    CAS  PubMed  Google Scholar 

  51. Sayah, M., Lough, A. J. & Organ, M. G. Sulfination by using Pd-PEPPSI complexes: studies into precatalyst activation, cationic and solvent effects and the role of butoxide base. Chem. Eur. J. 19, 2749–2756 (2013).

    CAS  PubMed  Google Scholar 

  52. Farmer, J. L., Pompeo, M., Lough, A. J. & Organ, M. G. [(IPent)PdCl2(morpholine)]: a readily activated precatalyst for room-temperature, additive-free carbon–sulfur coupling. Chem. Eur. J. 20, 15790–15798 (2014). Catalytic improvements result simply by replacing pyridine with morpholine in the PEPPSI scaffold.

    CAS  PubMed  Google Scholar 

  53. Pompeo, M., Froese, R. D. J., Hadei, N. & Organ, M. G. Pd-PEPPSI-IPentCl: a highly effective catalyst for the selective cross-coupling of secondary organozinc reagents. Angew. Chem. Int. Ed. 51, 11354–11357 (2012).

    CAS  Google Scholar 

  54. Hoi, K. H., Coggan, J. A. & Organ, M. G. Pd-PEPPSI-IPentCl: an effective catalyst for the preparation of triarylamines. Chem. Eur. J. 19, 843–845 (2013).

    CAS  PubMed  Google Scholar 

  55. Pompeo, M., Farmer, J. L., Froese, R. D. J. & Organ, M. G. Room-temperature amination of deactivated aniline and aryl halide partners with carbonate base using a Pd-PEPPSI-IPentCl-o-picoline catalyst. Angew. Chem. Int. Ed. 53, 3223–3226 (2014).

    CAS  Google Scholar 

  56. Sharif, S. et al. Selective monoarylation of primary amines using the Pd-PEPPSI-IPentCl precatalyst. Angew. Chem. Int. Ed. 54, 9507–9511 (2015).

    CAS  Google Scholar 

  57. Atwater, B. et al. The selective cross-coupling of secondary alkyl zinc reagents to five-membered-ring heterocycles using Pd-PEPPSI-IHeptCl. Angew. Chem. Int. Ed. 54, 9502–9506 (2015).

    CAS  Google Scholar 

  58. Atwater, B., Chandrasoma, N., Mitchell, D., Rodriguez, M. J. & Organ, M. G. Pd-PEPPSI-IHeptCl: a general-purpose, highly reactive catalyst for the selective coupling of secondary alkyl organozincs. Chem. Eur. J. 22, 14531–14534 (2016).

    PubMed  Google Scholar 

  59. Price, G. A. et al. Continuous flow Negishi cross-couplings employing silica-supported Pd-PEPPSI-IPr precatalyst. Catal. Sci. Tech. 6, 4733–4742 (2016).

    CAS  Google Scholar 

  60. Noel, T. & Buchwald, S. L. Cross-coupling in flow. Chem. Soc. Rev. 40, 5010–5029 (2011).

    CAS  PubMed  Google Scholar 

  61. Chartoire, A., Frogneux, X. & Nolan, S. P. An efficient palladium-NHC (NHC = N-heterocyclic carbene) and aryl amination pre-catalyst: [Pd(IPr*)(cinnamyl)Cl]. Adv. Synth. Catal. 354, 1897–1901 (2012).

    CAS  Google Scholar 

  62. Izquierdo, F., Chartoire, A. & Nolan, S. P. Direct S-arylation of unactivated arylsulfoxides using [Pd(IPr*)(cin)Cl]. ACS Catal. 3, 2190–2193 (2013).

    CAS  Google Scholar 

  63. Chartoire, A. et al. Recyclable NHC catalyst for the development of a generalized approach to continuous Buchwald–Hartwig reaction and workup. Org. Process Res. Dev. 20, 551–557 (2016).

    CAS  Google Scholar 

  64. Marelli, E. et al. Catalytic α-arylation of imines leading to N-unprotected indoles and azaindoles. ACS Catal. 6, 2930–2938 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bastug, G. & Nolan, S. P. [Pd(IPr*OMe)(cin)Cl] (Cin = cinnamyl): a versatile catalyst for C–N and C–C bond formation. Organometallics 33, 1253–1258 (2014).

    CAS  Google Scholar 

  66. Bastug, G. & Nolan, S. P. Carbon–sulfur bond formation catalyzed by [Pd(IPr*OMe)(cin)Cl] (Cin = cinnamyl). J. Org. Chem. 78, 9303–9308 (2013).

    CAS  PubMed  Google Scholar 

  67. Marelli, E., Chartoire, A., Le Duc, G. & Nolan, S. P. Arylation of amines in alkane solvents by using well-defined palladium–N-heterocyclic carbene complexes. ChemCatChem 7, 4021–4024 (2015).

    CAS  Google Scholar 

  68. Hill, L. L. et al. Synthesis and X-ray structure determination of highly active Pd(II), Pd(I), and Pd(0) complexes of di(tert-butyl)neopentylphosphine (DTBNpP) in the arylation of amines and ketones. J. Org. Chem. 75, 6477–6488 (2010).

    CAS  PubMed  Google Scholar 

  69. Johansson Seechurn, C. C. C., Parisel, S. L. & Colacot, T. J. Air-stable Pd(R-allyl)LCl (L = Q-Phos, P(t-Bu)3, etc.) systems for C–C/N couplings: insight into the structure–activity relationship and catalyst activation pathway. J. Org. Chem. 76, 7918–7932 (2011).

    CAS  PubMed  Google Scholar 

  70. DeAngelis, A. J., Gildner, P. G., Chow, R. & Colacot, T. J. Generating active “L-Pd(0)” via neutral or cationic π-allylpalladium complexes featuring biaryl/bipyrazolylphosphines: synthetic, mechanistic, and structure–activity studies in challenging cross-coupling reactions. J. Org. Chem. 80, 6794–6813 (2015). A key report on the development of an improved Pd precatalyst based on the η3-allyl framework.

    CAS  PubMed  Google Scholar 

  71. Hruszkewycz, D. P., Balcells, D., Guard, L. M., Hazari, N. & Tilset, M. Insight into the efficiency of cinnamyl-supported precatalysts for the Suzuki–Miyaura reaction: observation of Pd(I) dimers with bridging allyl ligands during catalysis. J. Am. Chem. Soc. 136, 7300–7316 (2014).

    CAS  PubMed  Google Scholar 

  72. Hruszkewycz, D. P. et al. The effect of 2-substituents on allyl-supported precatalysts for the Suzuki–Miyaura reaction: relating catalytic efficiency to the stability of Pd(I) bridging allyl dimers. Organometallics 34, 381–394 (2015).

    CAS  Google Scholar 

  73. Melvin, P. R., Balcells, D., Hazari, N. & Nova, A. Understanding precatalyst activation in cross-coupling reactions: alcohol facilitated reduction from Pd(II) to Pd(0) in precatalysts of the type (η3-allyl)Pd(L)(Cl) and (η3-indenyl)Pd(L)(Cl). ACS Catal. 5, 5596–5606 (2015).

    CAS  Google Scholar 

  74. Melvin, P. R. et al. Design of a versatile and improved precatalyst scaffold for palladium-catalyzed cross-coupling: (η3-1-tBu-indenyl)2(μ-Cl)2Pd2 . ACS Catal. 5, 3680–3688 (2015).

    CAS  Google Scholar 

  75. Melvin, P. R., Hazari, N., Beromi, M. M., Shah, H. P. & Williams, M. J. Pd-catalyzed Suzuki–Miyaura and Hiyama–Denmark couplings of aryl sulfamates. Org. Lett. 18, 5784–5787 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Proutiere, F., Aufiero, M. & Schoenebeck, F. Reactivity and stability of dinuclear Pd(I) complexes: studies on the active catalytic species, insights into precatalyst activation and deactivation, and application in highly selective cross-coupling reactions. J. Am. Chem. Soc. 134, 606–612 (2012).

    CAS  PubMed  Google Scholar 

  77. Kalvet, I., Bonney, K. J. & Schoenebeck, F. Kinetic and computational studies on Pd(I) dimer-mediated halogen exchange of aryl iodides. J. Org. Chem. 79, 12041–12046 (2014).

    CAS  PubMed  Google Scholar 

  78. Aufiero, M., Scattolin, T., Proutière, F. & Schoenebeck, F. Air-stable dinuclear iodine-bridged Pd(i) complex-catalyst, precursor, or parasite? The additive decides. Systematic nucleophile-activity study and application as precatalyst in cross-coupling. Organometallics 34, 5191–5195 (2015).

    CAS  Google Scholar 

  79. Bonney, K. J., Proutiere, F. & Schoenebeck, F. Dinuclear Pd(i) complexes — solely precatalysts? Demonstration of direct reactivity of a Pd(I) dimer with an aryl iodide. Chem. Sci. 4, 4434–4439 (2013).

    CAS  Google Scholar 

  80. Yin, G., Kalvet, I. & Schoenebeck, F. Trifluoromethylthiolation of aryl iodides and bromides enabled by a bench-stable and easy-to-recover dinuclear palladium(i) catalyst. Angew. Chem. Int. Ed. 54, 6809–6813 (2015).

    CAS  Google Scholar 

  81. Lee, H. G., Milner, P. J. & Buchwald, S. L. An improved catalyst system for the Pd-catalyzed fluorination of (hetero)aryl triflates. Org. Lett. 15, 5602–5605 (2013).

    CAS  PubMed  Google Scholar 

  82. Lee, H. G., Milner, P. J. & Buchwald, S. L. Pd-catalyzed nucleophilic fluorination of aryl bromides. J. Am. Chem. Soc. 136, 3792–3795 (2014). The first reported application of a [(LPd)n(μ-COD)] precatalyst incorporating sterically bulky phosphine ligands.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sather, A. C. et al. A fluorinated ligand enables room-temperature and regioselective Pd-catalyzed fluorination of aryl triflates and bromides. J. Am. Chem. Soc. 137, 13433–13438 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, H. G., Milner, P. J., Placzek, M. S., Buchwald, S. L. & Hooker, J. M. Virtually instantaneous, room-temperature [11C]-cyanation using biaryl phosphine Pd(0) complexes. J. Am. Chem. Soc. 137, 648–651 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, H. G., Milner, P. J., Colvin, M. T., Andreas, L. & Buchwald, S. L. Structure and reactivity of [(L·Pd)n ·(1,5-cyclooctadiene)] (n = 1–2) complexes bearing biaryl phosphine ligands. Inorg. Chim. Acta 422, 188–192 (2014).

    CAS  Google Scholar 

  86. Sather, A. C., Lee, H. G., Colombe, J. R., Zhang, A. & Buchwald, S. L. Dosage delivery of sensitive reagents enables glove-box-free synthesis. Nature 524, 208–211 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chirik, P. J. & Gunnoe, T. B. A. Meeting of metals — a joint virtual issue between organometallics and ACS catalysis on first-row transition metal complexes. ACS Catal. 5, 5584–5585 (2015).

    CAS  Google Scholar 

  88. Rosen, B. M. et al. Nickel-catalyzed cross-couplings involving carbon–oxygen bonds. Chem. Rev. 111, 1346–1416 (2011).

    CAS  PubMed  Google Scholar 

  89. Malineni, J., Jezorek, R. L., Zhang, N. & Percec, V. An indefinitely air-stable σ-NiII precatalyst for quantitative cross-coupling of unreactive aryl halides and mesylates with aryl neopentylglycolboronates. Synthesis 48, 2795–2807 (2016).

    CAS  Google Scholar 

  90. Wenkert, E., Michelotti, E. L. & Swindell, C. S. Nickel-induced conversion of carbon–oxygen into carbon–carbon bonds. One-step transformations of enol ethers into olefins and aryl ethers into biaryls. J. Am. Chem. Soc. 101, 2246–2247 (1979).

    CAS  Google Scholar 

  91. Inada, K. & Miyaura, N. Synthesis of biaryls via cross-coupling reaction of arylboronic acids with aryl chlorides catalyzed by NiCl2/triphenylphosphine complexes. Tetrahedron 56, 8657–8660 (2000).

    CAS  Google Scholar 

  92. Kobayashi, Y. & Mizojiri, R. Nickel-catalyzed coupling reaction of lithium organoborates and aryl mesylates possessing an electron withdrawing group. Tetrahedron Lett. 37, 8531–8534 (1996).

    CAS  Google Scholar 

  93. Kobayashi, Y., William, A. D. & Mizojiri, R. Scope and limitation of the nickel-catalyzed coupling reaction between lithium borates and mesylates. J. Organomet. Chem. 653, 91–97 (2002).

    CAS  Google Scholar 

  94. Leowanawat, P. et al. Trans-chloro(1-naphthyl)bis(triphenylphosphine)nickel(II)/PCy3 catalyzed cross-coupling of aryl and heteroaryl neopentylglycolboronates with aryl and heteroaryl mesylates and sulfamates at room temperature. J. Org. Chem. 77, 2885–2892 (2012).

    CAS  PubMed  Google Scholar 

  95. Kobayashi, Y., Mizojiri, R. & Ikeda, E. Nickel-catalyzed coupling reaction of 1,3-disubstituted secondary allylic carbonates and lithium aryl- and alkenylborates. J. Org. Chem. 61, 5391–5399 (1996).

    CAS  Google Scholar 

  96. Shi, S. & Szostak, M. Efficient synthesis of diaryl ketones by nickel-catalyzed Negishi cross-coupling of amides by carbon–nitrogen bond cleavage at room temperature accelerated by a solvent effect. Chem. Eur. J. 22, 10420–10424 (2016).

    CAS  PubMed  Google Scholar 

  97. Iyoda, M., Sato, K. & Oda, M. A simple synthesis of bitropones and conversion of 2,2艂-bitropone into dicyclohepta[b,d]furan dication, a novel dication species. J. Chem. Soc., Chem. Commun. 1547–1547 (1985).

  98. Masahiko, I., Hiroki, O., Koichi, S., Nobue, N. & Masaji, O. Homocoupling of aryl halides using nickel(II) complex and zinc in the presence of Et4NI. An efficient method synthesis biaryls bipyridines. Bull. Chem. Soc. Jpn 63, 80–87 (1990).

    Google Scholar 

  99. Ramgren, S. D., Hie, L., Ye, Y. & Garg, N. K. Nickel-catalyzed Suzuki–Miyaura couplings in green solvents. Org. Lett. 15, 3950–3953 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Quasdorf, K. W., Riener, M., Petrova, K. V. & Garg, N. K. Suzuki–Miyaura coupling of aryl carbamates, carbonates, and sulfamates. J. Am. Chem. Soc. 131, 17748–17749 (2009). An important example describing prefunctionalization of an electrophile prior to its use in cross-coupling.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Quasdorf, K. W. et al. Suzuki–Miyaura cross-coupling of aryl carbamates and sulfamates: experimental and computational studies. J. Am. Chem. Soc. 133, 6352–6363 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Antoft-Finch, A., Blackburn, T. & Snieckus, V. N,N-Diethyl O-carbamate: directed metalation group and orthogonal Suzuki–Miyaura cross-coupling partner. J. Am. Chem. Soc. 131, 17750–17752 (2009).

    CAS  PubMed  Google Scholar 

  103. Xu, L. et al. Nickel-catalyzed efficient and practical Suzuki–Miyaura coupling of alkenyl and aryl carbamates with aryl boroxines. Org. Lett. 12, 884–887 (2010).

    CAS  PubMed  Google Scholar 

  104. Chen, H. et al. Nickel-catalyzed cross-coupling of aryl phosphates with arylboronic acids. J. Org. Chem. 76, 2338–2344 (2011).

    CAS  PubMed  Google Scholar 

  105. Yu, D.-G. et al. Carbon–carbon formation via Ni-catalyzed Suzuki–Miyaura coupling through C–CN bond cleavage of aryl nitrile. Org. Lett. 11, 3374–3377 (2009).

    CAS  PubMed  Google Scholar 

  106. Shi, S., Meng, G. & Szostak, M. Synthesis of biaryls through nickel-catalyzed Suzuki–Miyaura coupling of amides by carbon–nitrogen bond cleavage. Angew. Chem. Int. Ed. 55, 6959–6963 (2016).

    CAS  Google Scholar 

  107. Guan, B.-T., Wang, Y., Li, B.-J., Yu, D.-G. & Shi, Z.-J. Biaryl construction via Ni-catalyzed C–O activation of phenolic carboxylates. J. Am. Chem. Soc. 130, 14468–14470 (2008).

    CAS  PubMed  Google Scholar 

  108. Sun, C.-L. et al. Construction of polysubstituted olefins through Ni-catalyzed direct activation of alkenyl C–O of substituted alkenyl acetates. Chem. Eur. J. 16, 5844–5847 (2010).

    CAS  PubMed  Google Scholar 

  109. Huang, K., Li, G., Huang, W.-P., Yu, D.-G. & Shi, Z.-J. Arylation of α-pivaloxyl ketones with arylboronic reagents via Ni-catalyzed sp3 C–O activation. Chem. Commun. 47, 7224–7226 (2011).

    CAS  Google Scholar 

  110. Dankwardt, J. W. Nickel-catalyzed cross-coupling of aryl grignard reagents with aromatic alkyl ethers: an efficient synthesis of unsymmetrical biaryls. Angew. Chem. Int. Ed. 116, 2482–2486 (2004).

    Google Scholar 

  111. Guan, B.-T. et al. Methylation of arenes via Ni-catalyzed aryl C–O/F activation. Chem. Commun. 1437–1439 (2008).

  112. Harris, M. R., Konev, M. O. & Jarvo, E. R. Enantiospecific intramolecular Heck reactions of secondary benzylic ethers. J. Am. Chem. Soc. 136, 7825–7828 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. León, T., Correa, A. & Martin, R. Ni-catalyzed direct carboxylation of benzyl halides with CO2 . J. Am. Chem. Soc. 135, 1221–1224 (2013).

    PubMed  Google Scholar 

  114. Kubo, T. & Chatani, N. Dicumyl peroxide as a methylating reagent in the Ni-catalyzed methylation of ortho C–H bonds in aromatic amides. Org. Lett. 18, 1698–1701 (2016).

    CAS  PubMed  Google Scholar 

  115. Percec, V., Bae, J.-Y. & Hill, D. H. Aryl mesylates in metal catalyzed homocoupling and cross-coupling reactions. 2. Suzuki-type nickel-catalyzed cross-coupling of aryl arenesulfonates and aryl mesylates with arylboronic acids. J. Org. Chem. 60, 1060–1065 (1995). A seminal report on the use of Ni catalysts in cross-coupling reactions.

    CAS  Google Scholar 

  116. Saito, S., Oh-tani, S. & Miyaura, N. Synthesis of biaryls via a nickel(0)-catalyzed cross-coupling reaction of chloroarenes with arylboronic acids. J. Org. Chem. 62, 8024–8030 (1997).

    CAS  PubMed  Google Scholar 

  117. Guan, B.-T. et al. Direct benzylic alkylation via Ni-catalyzed selective benzylic sp3 C–O activation. J. Am. Chem. Soc. 130, 3268–3269 (2008).

    CAS  PubMed  Google Scholar 

  118. Correa, A., León, T. & Martin, R. Ni-catalyzed carboxylation of C(sp2)– and C(sp3)–O bonds with CO2. J. Am. Chem. Soc. 136, 1062–1069 (2014).

    CAS  PubMed  Google Scholar 

  119. Zhao, Y.-L. et al. A highly practical and reliable nickel catalyst for Suzuki–Miyaura coupling of aryl halides. Adv. Synth. Catal. 353, 1543–1550 (2011).

    CAS  Google Scholar 

  120. Gao, H., Li, Y., Zhou, Y.-G., Han, F.-S. & Lin, Y.-J. Highly efficient Suzuki–Miyaura coupling of aryl tosylates and mesylates catalyzed by stable, cost-effective [1,3-bis(diphenylphosphino)propane]nickel(II) chloride [Ni(dppp)Cl2] with only 1 mol% loading. Adv. Synth. Cat. 353, 309–314 (2011).

    CAS  Google Scholar 

  121. Chen, G.-J. & Han, F.-S. An efficient Suzuki–Miyaura coupling of aryl sulfamates and boronic acids catalyzed by NiCl2(dppp). Eur. J. Org. Chem. 2012, 3575–3579 (2012).

    CAS  Google Scholar 

  122. Chen, G.-J., Huang, J., Gao, L.-X. & Han, F.-S. Nickel-catalyzed cross-coupling of phenols and arylboronic acids through an in situ phenol activation mediated by PyBroP. Chem. Eur. J. 17, 4038–4042 (2011).

    CAS  PubMed  Google Scholar 

  123. Molander, G. A., Cavalcanti, L. N. & García-García, C. Nickel-catalyzed borylation of halides and pseudohalides with tetrahydroxydiboron [B2(OH)4]. J. Org. Chem. 78, 6427–6439 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sengupta, S., Leite, M., Raslan, D. S., Quesnelle, C. & Snieckus, V. Nickel(0)-catalyzed cross coupling of aryl O-carbamates and aryl triflates with Grignard reagents. Directed ortho metalation-aligned synthetic methods for polysubstituted aromatics via a 1,2-dipole equivalent. J. Org. Chem. 57, 4066–4068 (1992).

    CAS  Google Scholar 

  125. Percec, V., Golding, G. M., Smidrkal, J. & Weichold, O. NiCl2(dppe)-catalyzed cross-coupling of aryl mesylates, arenesulfonates, and halides with arylboronic acids. J. Org. Chem. 69, 3447–3452 (2004).

    CAS  PubMed  Google Scholar 

  126. Rosen, B. M., Huang, C. & Percec, V. Sequential Ni-catalyzed borylation and cross-coupling of aryl halides via in situ prepared neopentylglycolborane. Org. Lett. 10, 2597–2600 (2008).

    CAS  PubMed  Google Scholar 

  127. Yonova, I. M. et al. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl Grignard reagents and identification of selective anti-breast-cancer agents. Angew. Chem. Int. Ed. 53, 2422–2427 (2014).

    CAS  Google Scholar 

  128. Tollefson, E. J., Dawson, D. D., Osborne, C. A. & Jarvo, E. R. Stereospecific cross-coupling reactions of aryl-substituted tetrahydrofurans, tetrahydropyrans, and lactones. J. Am. Chem. Soc. 136, 14951–14958 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Consiglio, G., Morandini, F. & Piccolo, O. Stereochemical aspects of the nickel-catalyzed alkylation of allylic alcohols. J. Am. Chem. Soc. 103, 1846–1847 (1981).

    CAS  Google Scholar 

  130. Didiuk, M. T., Morken, J. P. & Hoveyda, A. H. Phosphine-directed stereo and regioselective Ni-catalyzed reactions of Grignard reagents with allylic ethers. Tetrahedron 54, 1117–1130 (1998).

    CAS  Google Scholar 

  131. Anka-Lufford, L. L., Huihui, K. M. M., Gower, N. J., Ackerman, L. K. G. & Weix, D. J. Nickel-catalyzed cross-electrophile coupling with organic reductants in non-amide solvents. Chem. Eur. J. 22, 11564–11567 (2016).

    CAS  PubMed  Google Scholar 

  132. Huihui, K. M. M. et al. Decarboxylative cross-electrophile coupling of N-hydroxyphthalimide esters with aryl iodides. J. Am. Chem. Soc. 138, 5016–5019 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Marzouk, H., Rollin, Y., Folest, J., Nédélec, J. & Périchon, J. Electrochemical synthesis of ketones from acid chlorides and alkyl and aryl halides catalysed by nickel complexes. J. Organomet. Chem. 369, C47–C50 (1989).

    CAS  Google Scholar 

  134. Amatore, C., Jutand, A., Périchon, J. & Rollin, Y. Mechanism of the nickel-catalyzed electrosynthesis of ketones by heterocoupling of acyl and benzyl halides. Monatsh. Chem. 131, 1293–1304 (2000).

    CAS  Google Scholar 

  135. Chen, Q., Fan, X.-H., Zhang, L.-P. & Yang, L.-M. Nickel-catalyzed cross-coupling of carboxylic anhydrides with arylboronic acids. RSC Adv. 4, 53885–53890 (2014).

    CAS  Google Scholar 

  136. Standley, E. A., Smith, S. J., Müller, P. & Jamison, T. F. A. Broadly applicable strategy for entry into homogeneous nickel(0) catalysts from air-stable nickel(II) complexes. Organometallics 33, 2012–2018 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Park, N. H., Teverovskiy, G. & Buchwald, S. L. Development of an air-stable nickel precatalyst for the amination of aryl chlorides, sulfamates, mesylates, and triflates. Org. Lett. 16, 220–223 (2014).

    CAS  PubMed  Google Scholar 

  138. Malineni, J., Jezorek, R. L., Zhang, N. & Percec, V. NiIICl(1-naphthyl)(PCy3)2, an air-stable σ-NiII precatalyst for quantitative cross-coupling of aryl C–O electrophiles with aryl neopentylglycolboronates. Synthesis 48, 2808–2815 (2016).

    CAS  Google Scholar 

  139. Malineni, J., Jezorek, R. L., Zhang, N. & Percec, V. An indefinitely air-stable σ-NiII precatalyst for quantitative cross-coupling of unreactive aryl halides and mesylates with aryl neopentylglycolboronates. Synthesis 48, 2795–2807 (2016).

    CAS  Google Scholar 

  140. Mohadjer Beromi, M. et al. Mechanistic study of an improved ni precatalyst for Suzuki–Miyaura reactions of aryl sulfamates: understanding the role of Ni(I) species. J. Am. Chem. Soc. 139, 922–936 (2017).

    CAS  PubMed  Google Scholar 

  141. Lavoie, C. M. et al. Challenging nickel-catalysed amine arylations enabled by tailored ancillary ligand design. Nat. Commun. 7, 11073 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Guard, L. M., Mohadjer Beromi, M., Brudvig, G. W., Hazari, N. & Vinyard, D. J. Comparison of dppf-supported nickel precatalysts for the Suzuki–Miyaura reaction: the observation and activity of nickel(I). Angew. Chem. Int. Ed. 54, 13352–13356 (2015).

    CAS  Google Scholar 

  143. Shields, J. D., Gray, E. E. & Doyle, A. G. A. Modular, air-stable nickel precatalyst. Org. Lett. 17, 2166–2169 (2015). An example of applying a Ni precatalyst in a ligand screening procedure.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Cassar, L. A. New nickel-catalyzed synthesis of aromatic nitriles. J. Organomet. Chem. 54, C57–C58 (1973).

    CAS  Google Scholar 

  145. Fan, X.-H. & Yang, L.-M. Room-temperature nickel-catalysed Suzuki–Miyaura reactions of aryl sulfonates/halides with arylboronic acids. Eur. J. Org. Chem. 2011, 1467–1471 (2011).

    Google Scholar 

  146. Fan, X.-H. & Yang, L.-M. NiII–(σ-aryl) complex catalyzed Suzuki reaction of aryl tosylates with arylboronic acids. Eur. J. Org. Chem. 2010, 2457–2460 (2010).

    Google Scholar 

  147. Jezorek, R. L. et al. Air-stable nickel precatalysts for fast and quantitative cross-coupling of aryl sulfamates with aryl neopentylglycolboronates at room temperature. Org. Lett. 16, 6326–6329 (2014).

    CAS  PubMed  Google Scholar 

  148. Chen & Yang, L.-M. Ni(II)–(σ-aryl) complex: a facile, efficient catalyst for nickel-catalyzed carbon–nitrogen coupling reactions. J. Org. Chem. 72, 6324–6327 (2007).

    PubMed  Google Scholar 

  149. Gao, C.-Y. & Yang, L.-M. Nickel-catalyzed amination of aryl tosylates. J. Org. Chem. 73, 1624–1627 (2008).

    CAS  PubMed  Google Scholar 

  150. McGuinness, D. S., Cavell, K. J., Skelton, B. W. & White, A. H. Zerovalent palladium and nickel complexes of heterocyclic carbenes: oxidative addition of organic halides, carbon–carbon coupling processes, and the Heck reaction. Organometallics 18, 1596–1605 (1999).

    CAS  Google Scholar 

  151. Clark, J. S. K., Lavoie, C. M., MacQueen, P. M., Ferguson, M. J. & Stradiotto, M. A. Comparative reactivity survey of some prominent bisphosphine nickel(II) precatalysts in C–N cross-coupling. Organometallics 35, 3248–3254 (2016).

    CAS  Google Scholar 

  152. Standley, E. A. & Jamison, T. F. Simplifying nickel(0) catalysis: an air-stable nickel precatalyst for the internally selective benzylation of terminal alkenes. J. Am. Chem. Soc. 135, 1585–1592 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Magano, J. & Monfette, S. Development of an air-stable, broadly applicable nickel source for nickel-catalyzed cross-coupling. ACS Catal. 5, 3120–3123 (2015).

    CAS  Google Scholar 

  154. Martin, A. R., Makida, Y., Meiries, S., Slawin, A. M. Z. & Nolan, S. P. Enhanced activity of [Ni(NHC)CpCl] complexes in arylamination catalysis. Organometallics 32, 6265–6270 (2013).

    CAS  Google Scholar 

  155. Martin, A. R., Nelson, D. J., Meiries, S., Slawin, A. M. Z. & Nolan, S. P. Efficient C–N and C–S bond formation using the highly active [Ni(allyl)Cl(IPr*OMe)] precatalyst. Eur. J. Org. Chem. 2014, 3127–3131 (2014).

    CAS  Google Scholar 

  156. Macklin, T. K. & Snieckus, V. Directed ortho metalation methodology. The N,N-dialkyl aryl O-sulfamate as a new directed metalation group and cross-coupling partner for Grignard reagents. Org. Lett. 7, 2519–2522 (2005).

    CAS  PubMed  Google Scholar 

  157. Malyshev, D. A. et al. Homogeneous nickel catalysts for the selective transfer of a single arylthio group in the catalytic hydrothiolation of alkynes. Organometallics 25, 4462–4470 (2006).

    CAS  Google Scholar 

  158. Makida, Y., Marelli, E., Slawin, A. M. Z. & Nolan, S. P. Nickel-catalysed carboxylation of organoboronates. Chem. Commun. 50, 8010–8013 (2014).

    CAS  Google Scholar 

  159. Fernández-Salas, J. A., Marelli, E., Cordes, D. B., Slawin, A. M. Z. & Nolan, S. P. General and mild Ni0-catalyzed α-arylation of ketones using aryl chlorides. Chem. Eur. J. 21, 3906–3909 (2015).

    PubMed  Google Scholar 

  160. Marelli, E., Fernández Salas, J. A. & Nolan, S. P. Synthesis of an intermediate of nafoxidine via nickel-catalyzed ketone arylation. Synthesis 47, 2032–2037 (2015).

    CAS  Google Scholar 

  161. Anderson, T. J., Jones, G. D. & Vicic, D. A. Evidence for a Nii active species in the catalytic cross-coupling of alkyl electrophiles. J. Am. Chem. Soc. 126, 8100–8101 (2004). An example of a cross-coupling reaction in which Ni(i) is proposed to be the active species.

    CAS  PubMed  Google Scholar 

  162. Zhang, K., Conda-Sheridan, M., R. Cooke, S. & Louie, J. N-Heterocyclic carbene bound nickel(I) complexes and their roles in catalysis. Organometallics 30, 2546–2552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Arendt, K. M. & Doyle, A. G. Dialkyl ether formation by nickel-catalyzed cross-coupling of acetals and aryl iodides. Angew. Chem. Int. Ed. 54, 9876–9880 (2015).

    CAS  Google Scholar 

  164. Dander, J. E., Weires, N. A. & Garg, N. K. Benchtop delivery of Ni(COD)2 using paraffin capsules. Org. Lett. 18, 3934–3936 (2016).

    CAS  PubMed  Google Scholar 

  165. Staudaher, N. D., Stolley, R. M. & Louie, J. Synthesis, mechanism of formation, and catalytic activity of xantphos nickel π-complexes. Chem. Commun. 50, 15577–15580 (2014).

    CAS  Google Scholar 

  166. Semmelhack, M. F. et al. Reaction of aryl and vinyl halides with zerovalent nickel-preparative aspects and the synthesis of alnusone. J. Am. Chem. Soc. 103, 6460–6471 (1981).

    CAS  Google Scholar 

  167. Amaike, K., Muto, K., Yamaguchi, J. & Itami, K. Decarbonylative C–H coupling of azoles and aryl esters: unprecedented nickel catalysis and application to the synthesis of muscoride A. J. Am. Chem. Soc. 134, 13573–13576 (2012).

    CAS  PubMed  Google Scholar 

  168. Zell, T. & Radius, U. Carbon halide bond activation of benzyl chloride and benzyl bromide using an NHC-stabilized nickel(0) complex. Z. Anorg. Allg. Chem. 637, 1858–1862 (2011).

    CAS  Google Scholar 

  169. Schaub, T., Backes, M. & Radius, U. Catalytic C–C bond formation accomplished by selective C–F activation of perfluorinated arenes. J. Am. Chem. Soc. 128, 15964–15965 (2006).

    CAS  PubMed  Google Scholar 

  170. Zhou, J. et al. Preparing (multi)fluoroarenes as building blocks for synthesis: nickel-catalyzed borylation of polyfluoroarenes via C–F bond cleavage. J. Am. Chem. Soc. 138, 5250–5253 (2016).

    CAS  PubMed  Google Scholar 

  171. Iglesias, M. J. et al. Synthesis, structural characterization, and catalytic activity of IPrNi(styrene)2 in the amination of aryl tosylates. Organometallics 31, 6312–6316 (2012).

    CAS  Google Scholar 

  172. Rull, S. G., Blandez, J. F., Fructos, M. R., Belderrain, T. R. & Nicasio, M. C. C–N coupling of indoles and carbazoles with aromatic chlorides catalyzed by a single-component NHC-nickel(0) precursor. Adv. Synth. Catal. 357, 846–846 (2015).

    Google Scholar 

  173. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Corcoran, E. B. et al. Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science 353, 279–283 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Tellis, J. C. et al. Single-electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp3sp2 cross-coupling. Acc. Chem. Res. 49, 1429–1439 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Organ, M. G. et al. A user-friendly, all-purpose Pd–NHC (NHC = N-heterocyclic carbine) precatalyst for the Negishi reaction: a step towards a universal cross-coupling catalyst. Chem. Eur. J. 12, 4749–4755 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.H. acknowledges support from the National Institute of General Medical Sciences (NIHGMS) under Award Number R01GM120162. P.R.M. and M.M. thank the National Science Foundation (NSF) for support as NSF Graduate Research Fellows. The authors thank their co-workers and collaborators for their insight, which has shaped their view of the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilay Hazari.

Ethics declarations

Competing interests

The authors declare no competing interests

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazari, N., Melvin, P. & Beromi, M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat Rev Chem 1, 0025 (2017). https://doi.org/10.1038/s41570-017-0025

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing