Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands

Subjects

An Author Correction to this article was published on 26 January 2018

Abstract

The response of drylands to environmental gradients can be abrupt rather than gradual. These shifts largely occur unannounced and are difficult to reverse once they happen; their prompt detection is of crucial importance. The distribution of vegetation patch sizes may indicate the proximity to these shifts, but the use of this metric is hampered by a lack of large-scale studies relating these distributions to the provision of multiple ecosystem functions (multifunctionality) and comparing them to other ecosystem attributes, such as total plant cover. Here we sampled 115 dryland ecosystems across the globe and related their vegetation attributes (cover and patch size distributions) to multifunctionality. Multifunctionality followed a bimodal distribution across our sites, suggesting alternative states in the functioning of drylands. Although plant cover was the strongest predictor of multifunctionality when linear analyses were used, only patch size distributions reflected the bimodal distribution of multifunctionality observed. Differences in the coupling between nutrient cycles and in the importance of self-organizing biotic processes characterized the two multifunctionality states observed. Our findings support the use of vegetation patterns as indicators of ecosystem functioning in drylands and pave the way for developing effective strategies to monitor desertification processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main types of patch size distribution found in global drylands.
Figure 2: Drivers of the two main types of patch size distribution observed.
Figure 3: Alternative states in drylands multifunctionality.
Figure 4: Relationships between aridity and plant cover, patch size distributions and multifunctionality.

Similar content being viewed by others

References

  1. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS  PubMed  Google Scholar 

  2. Kéfi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS One 9, e92097 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    CAS  PubMed  Google Scholar 

  4. Millenium Ecosystem Assessment Ecosystems and Human Well-Being: Desertification Synthesis (World Resources Institute, 2005).

  5. Von Hardenberg, J., Meron, E., Shachak, M. & Zarmi, Y. Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101 (2001).

    CAS  PubMed  Google Scholar 

  6. Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    CAS  PubMed  Google Scholar 

  7. Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).

    CAS  PubMed  Google Scholar 

  8. Scanlon, T. M., Caylor, K. K., Levin, S. A. & Rodriguez-Iturbe, I. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449, 209–212 (2007).

    CAS  PubMed  Google Scholar 

  9. Kéfi, S. et al. Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecol. Lett. 14, 29–35 (2011).

    PubMed  Google Scholar 

  10. Lin, Y., Han, G., Zhao, M. & Chang, S. X. Spatial vegetation patterns as early signs of desertification: a case study of a desert steppe in Inner Mongolia, China. Landscape Ecol. 25, 1519–1527 (2010).

    Google Scholar 

  11. Moreno de las Heras, M., Saco, P. M., Willgoose, G. R. & Tongway, D. J. Assessing landscape structure and pattern fragmentation in semiarid ecosystems using patch-size distributions. Ecol. Appl. 21, 2793–2805 (2011).

    PubMed  Google Scholar 

  12. Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).

    PubMed  Google Scholar 

  13. Manor, A. & Shnerb, N. M. Facilitation, competition, and vegetation patchiness: from scale free distribution to patterns. J. Theor. Biol. 253, 838–842 (2008).

    PubMed  Google Scholar 

  14. Maestre, F. T. & Escudero, A. Is the patch size distribution of vegetation a suitable indicator of desertification processes? Ecology 90, 1729–1735 (2009).

    PubMed  Google Scholar 

  15. Bestelmeyer, B. T., Duniway, M. C., James, D. K., Burkett, L. M. & Havstad, K. M. A test of critical thresholds and their indicators in a desertification-prone ecosystem: more resilience than we thought. Ecol. Lett. 16, 339–345 (2013).

    PubMed  Google Scholar 

  16. Kéfi, S., Alados, C. L., Chaves, R. C. G., Pueyo, Y. & Rietkerk, M. Is the patch size distribution of vegetation a suitable indicator of desertification processes? Ecology 91, 3739–3742 (2010).

    PubMed  Google Scholar 

  17. Zurlini, G., Jones, K. B., Riitters, K. H., Li, B.-L. & Petrosillo, I. Early warning signals of regime shifts from cross-scale connectivity of land-cover patterns. Ecol. Indic. 45, 549–560 (2014).

    Google Scholar 

  18. Cowie, A. L. et al. Towards sustainable land management in the drylands: scientific connections in monitoring and assessing dryland degradation, climate change and biodiversity. Land Degrad. Dev. 22, 248–260 (2011).

    Google Scholar 

  19. Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

    CAS  PubMed  Google Scholar 

  20. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    CAS  PubMed  Google Scholar 

  22. Rietkerk, M. et al. Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524–530 (2002).

    PubMed  Google Scholar 

  23. Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).

    PubMed  Google Scholar 

  24. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  PubMed  Google Scholar 

  25. Suding, K. N., Gross, K. L. & Houseman, G. R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19, 46–53 (2004).

    PubMed  Google Scholar 

  26. Whitford, W. G. Ecology of Desert Systems (Academic, 2002).

    Google Scholar 

  27. Mayor, A. G. et al. Feedbacks between vegetation pattern and resource loss dramatically decrease ecosystem resilience and restoration potential in a simple dryland model. Landscape Ecol. 28, 931–942 (2013).

    Google Scholar 

  28. Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).

    PubMed  Google Scholar 

  29. Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).

    Google Scholar 

  30. Wang, C. et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 5, 4799 (2014).

    CAS  PubMed  Google Scholar 

  31. Tonway, D. J. & Hindley, N. L. Landscape Function Analysis Manual: Procedures for Monitoring and Assessing Landscapes with Special Reference to Minesites and Rangelands (CSIRO Sustainable Ecosystems, 2004).

  32. Soliveres, S., Maestre, F. T., Berdugo, M. & Allan, E. A missing link between facilitation and plant species coexistence: nurses benefit generally rare species more than common ones. J. Ecol. 103, 1183–1189 (2015).

    Google Scholar 

  33. Soliveres, S. & Maestre, F. T. Plant–plant interactions, environmental gradients and plant diversity: a global synthesis of community-level studies. Perspect. Plant Ecol. Evol. Syst. 16, 154–163 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Verdú, M. & Valiente-Banuet, A. The relative contribution of abundance and phylogeny to the structure of plant facilitation networks. Oikos 120, 1351–1356 (2011).

    Google Scholar 

  35. Valiente-Banuet, A., Rumebe, A. V., Verdú, M. & Callaway, R. M. Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proc. Natl Acad. Sci. USA 103, 16812–16817 (2006).

    CAS  PubMed  Google Scholar 

  36. Zomer, R., Trabucco, A., van Straaten, O. & Bossio, D. Carbon, Land and Water: a Global Analysis of the Hydrologic Dimensions of Climate Change Mitigation through Afforestation/Reforestation Report no. 101 (International Water Management Institute, 2006).

    Google Scholar 

  37. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  38. Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).

    CAS  PubMed  Google Scholar 

  39. Reiss, J., Bridle, J. R., Montoya, J. M. & Woodward, G. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol. 24, 505–514 (2009).

    PubMed  Google Scholar 

  40. Jax, K. Ecosystem functioning (Cambridge Univ. Press, 2010).

    Google Scholar 

  41. Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    CAS  PubMed  Google Scholar 

  42. Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).

    PubMed  Google Scholar 

  43. Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).

    CAS  PubMed  Google Scholar 

  44. Orwin, K. H. et al. Linkages of plant traits to soil properties and the functioning of temperate grassland. J. Ecol. 98, 1074–1083 (2010).

    Google Scholar 

  45. Maestre, F. T. et al. Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Phil. Trans. R. Soc. B 365, 2057–2070 (2010).

    PubMed  Google Scholar 

  46. Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).

    PubMed  Google Scholar 

  47. Quero, J. L., Maestre, F. T., Ochoa, V., García-Gómez, M. & Delgado-Baquerizo, M. On the importance of shrub encroachment by sprouters, climate, species richness and anthropic factors for ecosystem multifunctionality in semi-arid Mediterranean ecosystems. Ecosystems 16, 1248–1261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

    CAS  PubMed  Google Scholar 

  49. Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).

    CAS  PubMed  Google Scholar 

  50. Pendleton, R. M., Hoeinghaus, D. J., Gomes, L. C. & Agostinho, A. A. Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment. PLoS ONE 9, e84568 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Valencia, E. et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol. 206, 660–671 (2015).

    PubMed  Google Scholar 

  52. Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Google Scholar 

  54. White, E. P., Enquist, B. J. & Green, J. L. On estimating the exponent of power-law frequency distributions. Ecology 89, 905–912 (2008).

    PubMed  Google Scholar 

  55. Solomon, C. & Breckon, T. Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab (Wiley-Blackwell, 2011).

    Google Scholar 

  56. Pal, N. R. & Pal, S. K. A review on image segmentation techniques. Pattern Recogn. 26, 1277–1294 (1993).

    Google Scholar 

  57. Lu, D. & Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28, 823–870 (2007).

    Google Scholar 

  58. MATLAB v. 7.5.0.342 (R2007b) (The MathWorks Inc., 2007).

  59. Moore, D. S. The Basic Practice of Statistics (Palgrave Macmillan, 2010).

    Google Scholar 

  60. Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Google Scholar 

  61. Newman, M. E. J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005).

    Google Scholar 

  62. Seiler, M. C. & Seiler, F. A. Numerical recipes in C: the art of scientific computing. Risk Anal. 9, 415–416 (1989).

    Google Scholar 

  63. Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge Univ. Press, 2006).

    Google Scholar 

  64. Bautista, S., Mayor, A. G., Bourakhouadar, J. & Bellot, J. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems 10, 987–998 (2007).

    Google Scholar 

  65. Lefever, R. & Lejeune, O. On the origin of tiger bush. Bull. Math. Biol. 59, 263–294 (1997).

    Google Scholar 

  66. McLachlan, G. & Peel, D. Finite Mixture Models (Wiley, 2004).

    Google Scholar 

  67. Livina, V. N. & Lenton, T. M. A modified method for detecting incipient bifurcations in a dynamical system. Geophys. Res. Lett. 34, L03712 (2007).

    Google Scholar 

Download references

Acknowledgements

We thank D. Eldridge, E. Allan and M. Boer for comments and inputs on earlier versions of this manuscript, C. Xu for discussions during the processing of the images and all the members of the EPES-BIOCOM network for the collection of field data. This work was funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013) and ERC grant agreement no. 242658 (BIOCOM). M.B. was supported by a FPU fellowship from the Spanish Ministry of Education, Culture and Sports (ref. AP2010-0759). F.T.M. acknowledges support from a Humboldt Research Award from the Alexander von Humboldt Foundation during writing of the manuscript. S.K. received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 283068 (CASCADE).

Author information

Authors and Affiliations

Authors

Contributions

F.T.M. designed the study and coordinated field data acquisition. Data analyses were done by M.B., assisted by S.K. and S.S. The paper was written by M.B. and all authors substantially contributed to subsequent drafts.

Corresponding author

Correspondence to Miguel Berdugo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–9, Supplementary Table 1, Supplementary Methods, Supplementary References (PDF 865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berdugo, M., Kéfi, S., Soliveres, S. et al. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat Ecol Evol 1, 0003 (2017). https://doi.org/10.1038/s41559-016-0003

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-016-0003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing