Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis

Abstract

Malaria control is heavily dependent on chemotherapeutic agents for disease prevention and drug treatment. Defining the mechanism of action for licensed drugs, for which no target is characterized, is critical to the development of their second-generation derivatives to improve drug potency towards inhibition of their molecular targets. Mefloquine is a widely used antimalarial without a known mode of action. Here, we demonstrate that mefloquine is a protein synthesis inhibitor. We solved a 3.2 Å cryo-electron microscopy structure of the Plasmodium falciparum 80S ribosome with the (+)-mefloquine enantiomer bound to the ribosome GTPase-associated centre. Mutagenesis of mefloquine-binding residues generates parasites with increased resistance, confirming the parasite-killing mechanism. Furthermore, structure-guided derivatives with an altered piperidine group, predicted to improve binding, show enhanced parasiticidal effect. These data reveal one possible mode of action for mefloquine and demonstrate the vast potential of cryo-electron microscopy to guide the development of mefloquine derivatives to inhibit parasite protein synthesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MFQ inhibits cytosolic translation in P. falciparum.
Figure 2: MFQ interacts with the GTPase-associated centre of the P. falciparum large ribosomal subunit.
Figure 3: The primary binding site for (+) MFQ.
Figure 4: Structure-based design of MFQ derivatives.

Similar content being viewed by others

References

  1. World Malaria Report (WHO, 2016); http://www.who.int/malaria/publications/world-malaria-report-2016/en

  2. White, N. J. et al. Malaria. Lancet 383, 723–735 (2014).

    PubMed  Google Scholar 

  3. Wells, T. N., Hooft van Huijsduijnen, R. & Van Voorhis, W. C. Malaria medicines: a glass half full? Nat. Rev. Drug Discov. 14, 424–442 (2015).

    CAS  PubMed  Google Scholar 

  4. Nevin, R. L. & Byrd, A. M. Neuropsychiatric adverse reactions to mefloquine: a systematic comparison of prescribing and patient safety guidance in the US, UK, Ireland, Australia, New Zealand, and Canada. Neurol. Ther. 5, 69–83 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. Lim, P. et al. Decreasing pfmdr1 copy number suggests that Plasmodium falciparum in western Cambodia is regaining in vitro susceptibility to mefloquine. Antimicrob. Agents Chemother. 59, 2934–2937 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Roberts, L. Malaria wars. Sci. Transl. Med. 352, 398–405 (2016).

    CAS  Google Scholar 

  7. Sanchez, C. P., Rotmann, A., Stein, W. D. & Lanzer, M. Polymorphisms within PfMDR1 alter the substrate specificity for anti-malarial drugs in Plasmodium falciparum. Mol. Microbiol. 70, 786–798 (2008).

    CAS  PubMed  Google Scholar 

  8. Cowman, A. F., Galatis, D. & Thompson, J. K. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc. Natl Acad. Sci. USA 91, 1143–1147 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reed, M. B., Saliba, K. J., Caruana, S. R., Kirk, K . & Cowman, A. F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906–909 (2000).

    CAS  PubMed  Google Scholar 

  10. Sanchez, C. P., Dave, A., Stein, W. D. & Lanzer, M. Transporters as mediators of drug resistance in Plasmodium falciparum. Int. J. Parasitol. 40, 1109–1118 (2010).

    CAS  PubMed  Google Scholar 

  11. Gamo, F.-J. et al. Thousands of chemical starting points for antimalarial lead identification. Nature 465, 305–310 (2010).

    CAS  PubMed  Google Scholar 

  12. Dahl, E. L. et al. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother. 50, 3124–3131 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Goodman, C. D., Su, V. & McFadden, G. I. The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 152, 181–191 (2007).

    CAS  PubMed  Google Scholar 

  14. Wong, W. et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife 3, e03080 (2014).

    PubMed Central  Google Scholar 

  15. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334, 1524–1529 (2011).

    CAS  PubMed  Google Scholar 

  16. Spahn, C. M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brodersen, D. E. et al. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 1143–1154 (2000).

    CAS  PubMed  Google Scholar 

  18. Lutz, R. E., Ohnmacht, C. J. & Patel, A. R. Antimalarials. 7. Bis(trifluoromethyl)-α-(2-piperidyl)-4-quinolinemethanols. J. Med. Chem. 14, 926–928 (1971).

    CAS  PubMed  Google Scholar 

  19. Harms, J. M. et al. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol. Cell 30, 26–38 (2008).

    CAS  PubMed  Google Scholar 

  20. Ghorbal, M. et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR–Cas9 system. Nat. Biotechnol. 32, 819–821 (2014).

    CAS  PubMed  Google Scholar 

  21. Lelievre, J. et al. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence ‘transmission blocking’ assay. PLoS ONE 7, e35019 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Delves, M. J. et al. Male and female Plasmodium falciparum mature gametocytes show different responses to antimalarial drugs. Antimicrob. Agents Chemother. 57, 3268–3274 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Waters, A. P., Syin, C. & McCutchan, T. F. Developmental regulation of stage-specific ribosome populations in Plasmodium. Nature 342, 438–440 (1989).

    CAS  PubMed  Google Scholar 

  24. Aguiar, A. C., Pereira, D. B., Amaral, N. S., De Marco, L. & Krettli, A. U. Plasmodium vivax and Plasmodium falciparum ex vivo susceptibility to anti-malarials and gene characterization in Rondonia, west Amazon, Brazil. Malar. J. 13, 73 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Otigbuo, I. N. & Onabanjo, A. O. The in vitro and in vivo effects of mefloquine on Trypanosoma brucei brucei. J. Hyg. Epidemiol. Microbiol. Immunol. 36, 191–199 (1992).

    CAS  PubMed  Google Scholar 

  26. Holfels, E., McAuley, J., Mack, D., Milhous, W. K. & McLeod, R. In vitro effects of artemisinin ether, cycloguanil hydrochloride (alone and in combination with sulfadiazine), quinine sulfate, mefloquine, primaquine phosphate, trifluoperazine hydrochloride, and verapamil on toxoplasma gondii. Antimicrob. Agents Chemother. 38, 1392–1396 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Khatter, H., Myasnikov, A. G., Natchiar, S. K. & Klaholz, B. P. Structure of the human 80S ribosome. Nature 520, 640–645 (2015).

    CAS  PubMed  Google Scholar 

  28. Brown, A. et al. Structure of the large ribosomal subunit from human mitochondria. Science 346, 718–722 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Milner, E. et al. Structure–activity relationships amongst 4-position quinoline methanol antimalarials that inhibit the growth of drug sensitive and resistant strains of Plasmodium falciparum. Bioorg. Med. Chem. Lett. 20, 1347–1351 (2010).

    CAS  PubMed  Google Scholar 

  30. Milner, E. et al. Anti-malarial activity of a non-piperidine library of next-generation quinoline methanols. Malar. J. 9, 51 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Na-Bangchang, K., Muhamad, P., Ruaengweerayut, R., Chaijaroenkul, W. & Karbwang, J. Identification of resistance of Plasmodium falciparum to artesunate–mefloquine combination in an area along the Thai–Myanmar border: integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity. Malar. J. 12, 263 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Garreau de Loubresse, N. et al. Structural basis for the inhibition of the eukaryotic ribosome. Nature 513, 517–522 (2014).

    CAS  PubMed  Google Scholar 

  33. Sun, M . et al. Dynamical features of the Plasmodium falciparum ribosome during translation. Nucleic Acids Res. 43, 10515–10524 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahyong, V. et al. Identification of Plasmodium falciparum specific translation inhibitors from the MMV malaria Box using a high throughput in vitro translation screen. Malar. J. 15, 173 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  36. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bai, X. C., Fernandez, I. S., McMullan, G. & Scheres, S. H. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2, e00461 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  PubMed  Google Scholar 

  41. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    CAS  PubMed  Google Scholar 

  42. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nicholls, R. A., Long, F. & Murshudov, G. N. Low-resolution refinement tools in REFMAC5. Acta Crystallogr. D 68, 404–417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chou, F. C., Sripakdeevong, P., Dibrov, S. M., Hermann, T. & Das, R. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods 10, 74–76 (2013).

    CAS  PubMed  Google Scholar 

  47. Chen, V. B. et al. Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  48. Baum, J. et al. Reticulocyte-binding protein homologue 5—an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int. J. Parasitol. 39, 371–380 (2009).

    CAS  PubMed  Google Scholar 

  49. Boyle, M. J. et al. Isolation of viable Plasmodium falciparum merozoites to define erythrocyte invasion events and advance vaccine and drug development. Proc. Natl Acad. Sci. USA 107, 14378–14383 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gillespie, R. J. et al. 4-quinolinemethanol derivatives as purine receptor antagonists (II) US patent 6,608,085 (2003).

Download references

Acknowledgements

The authors thank I. Lucet, J. Boddey, S. Herrmann, G. McFadden, J. Rayner, A. Ruecker, M. Delves, H. Baumann, G. Murshudov and P. Emsley for discussions and experimental assistance, S. Chen and C. Savva for help with microscopy, and J. Grimmett and T. Darling for help with computing. The experimental data were made possible by Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS. The research was directly supported by a National Health and Medical Research Council of Australia (NHMRC) Project Grant (APP1024678 to J.B. and W.W.), the Australian Cancer Research Foundation, a Human Frontier Science Program (HFSP) Young Investigator Program Grant (RGY0071/2011, to J.B.) and grants from the UK Medical Research Council (MC_UPA0251013, to S.H.W.S.). W.W. is an Early Career Development Awardee (APP1053801) from the NHMRC and was in receipt of a travel award from OzEMalaR to visit MRC–LMB UK to conduct experiments. X.-C.B. is supported by an EU FP7 Marie Curie Postdoctoral Fellowship. A.B. and I.S.F. are supported by grants to V. Ramakrishnan from the Wellcome Trust (WT096570) and the UK Medical Research council (MC_U105184332). J.B. was supported by a Future Fellowship (FT100100112) from the Australian Research Council (ARC) and is currently supported by an Investigator Award from the Wellcome Trust (100993/Z/13/Z). Additional support for this work came from a Pathfinder Award from the Wellcome Trust (105686).

Author information

Authors and Affiliations

Authors

Contributions

W.W., X.-C.B., B.E.S., K.E.J., T.T., D.S.M., S.A.R., S.H.W.S. and J.B. designed all experiments. W.W., X.-C.B., B.E.S., K.E.J., A.B., T.T., D.S.M., J.K.T., E.H. and I.S.F. performed experiments. W.W., X.-C.B., B.E.S., K.E.J., T.T., A.B., J.K.T., S.A.R., A.F.C., S.H.W.S. and J.B. contributed to manuscript preparation.

Corresponding authors

Correspondence to Sjors H. W. Scheres or Jake Baum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-6, Supplementary Data Tables 1-4. (PDF 10094 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, W., Bai, XC., Sleebs, B. et al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat Microbiol 2, 17031 (2017). https://doi.org/10.1038/nmicrobiol.2017.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.31

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research