Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

Abstract

Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of BCAs detected by karyotyping at nucleotide resolution.
Figure 2: De novo BCAs associated with congenital anomalies disrupt functionally relevant loci.
Figure 3: Recurrent disruption of long-range regulatory interactions at the 5q14.3 locus.
Figure 4: Correlations between phenotypes and genes disrupted in subjects harboring pathogenic BCAs.

Similar content being viewed by others

References

  1. Jacobs, P.A., Melville, M., Ratcliffe, S., Keay, A.J. & Syme, J. A cytogenetic survey of 11,680 newborn infants. Ann. Hum. Genet. 37, 359–376 (1974).

    CAS  PubMed  Google Scholar 

  2. Nielsen, J. & Wohlert, M. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum. Genet. 87, 81–83 (1991).

    CAS  PubMed  Google Scholar 

  3. Ravel, C., Berthaut, I., Bresson, J.L. & Siffroi, J.P. Prevalence of chromosomal abnormalities in phenotypically normal and fertile adult males: large-scale survey of over 10,000 sperm donor karyotypes. Hum. Reprod. 21, 1484–1489 (2006).

    CAS  PubMed  Google Scholar 

  4. Funderburk, S.J., Spence, M.A. & Sparkes, R.S. Mental retardation associated with “balanced” chromosome rearrangements. Am. J. Hum. Genet. 29, 136–141 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Marshall, C.R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. McKusick, V.A. & Amberger, J.S. The morbid anatomy of the human genome: chromosomal location of mutations causing disease. J. Med. Genet. 30, 1–26 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Talkowski, M.E. et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149, 525–537 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J.O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 14, 125–138 (2013).

    CAS  PubMed  Google Scholar 

  9. Warburton, D. Current techniques in chromosome analysis. Pediatr. Clin. North Am. 27, 753–769 (1980).

    CAS  PubMed  Google Scholar 

  10. Talkowski, M.E. et al. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am. J. Hum. Genet. 88, 469–481 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Talkowski, M.E. et al. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N. Engl. J. Med. 367, 2226–2232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schluth-Bolard, C. et al. Breakpoint mapping by next generation sequencing reveals causative gene disruption in patients carrying apparently balanced chromosome rearrangements with intellectual deficiency and/or congenital malformations. J. Med. Genet. 50, 144–150 (2013).

    CAS  PubMed  Google Scholar 

  13. Utami, K.H. et al. Detection of chromosomal breakpoints in patients with developmental delay and speech disorders. PLoS One 9, e90852 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Vergult, S. et al. Mate pair sequencing for the detection of chromosomal aberrations in patients with intellectual disability and congenital malformations. Eur. J. Hum. Genet. 22, 652–659 (2014).

    CAS  PubMed  Google Scholar 

  15. Tabet, A.C. et al. Complex nature of apparently balanced chromosomal rearrangements in patients with autism spectrum disorder. Mol. Autism 6, 19 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rao, S.S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Köhler, S. et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42, D966–D974 (2014).

    PubMed  Google Scholar 

  19. Meyerson, M. & Pellman, D. Cancer genomes evolve by pulverizing single chromosomes. Cell 144, 9–10 (2011).

    CAS  PubMed  Google Scholar 

  20. Stephens, P.J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kloosterman, W.P. et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011).

    CAS  PubMed  Google Scholar 

  22. Chiang, C. et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 44, 390–397 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Baca, S.C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. De Gregori, M. et al. Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients. J. Med. Genet. 44, 750–762 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, F. et al. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat. Genet. 41, 849–853 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Abyzov, A. et al. Analysis of deletion breakpoints from 1,092 humans reveals details of mutation mechanisms. Nat. Commun. 6, 7256 (2015).

    CAS  PubMed  Google Scholar 

  27. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Petrovski, S., Wang, Q., Heinzen, E.L., Allen, A.S. & Goldstein, D.B. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 9, e1003709 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Samocha, K.E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Berg, J.S. et al. An informatics approach to analyzing the incidentalome. Genet. Med. 15, 36–44 (2013).

    CAS  PubMed  Google Scholar 

  32. Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ascano, M. Jr. et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492, 382–386 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanders, S.J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cotney, J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat. Commun. 6, 6404 (2015).

    CAS  PubMed  Google Scholar 

  39. Sugathan, A. et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc. Natl. Acad. Sci. USA 111, E4468–E4477 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hawrylycz, M.J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Purcell, S.M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Landrum, M.J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D1, D862–D868 (2016).

    Google Scholar 

  44. Kleefstra, T. et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am. J. Hum. Genet. 79, 370–377 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu, W. et al. NFIA haploinsufficiency is associated with a CNS malformation syndrome and urinary tract defects. PLoS Genet. 3, e80 (2007).

    PubMed  PubMed Central  Google Scholar 

  46. Rosenfeld, J.A. et al. Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS One 4, e6568 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Talkowski, M.E. et al. Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am. J. Hum. Genet. 89, 551–563 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rasmussen, M.B. et al. Neurodevelopmental disorders associated with dosage imbalance of ZBTB20 correlate with the morbidity spectrum of ZBTB20 candidate target genes. J. Med. Genet. 51, 605–613 (2014).

    CAS  PubMed  Google Scholar 

  49. DeSanto, C. et al. WAC loss-of-function mutations cause a recognisable syndrome characterised by dysmorphic features, developmental delay and hypotonia and recapitulate 10p11.23 microdeletion syndrome. J. Med. Genet. 52, 754–761 (2015).

    CAS  PubMed  Google Scholar 

  50. Turner, T.N. et al. Loss of δ-catenin function in severe autism. Nature 520, 51–56 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Xia, F. et al. De novo truncating mutations in AHDC1 in individuals with syndromic expressive language delay, hypotonia, and sleep apnea. Am. J. Hum. Genet. 94, 784–789 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Splawski, I. et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc. Natl. Acad. Sci. USA 102, 8089–8096, discussion 8086–8088 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Petrovski, S. et al. Germline de novo mutations in GNB1 cause severe neurodevelopmental disability, hypotonia, and seizures. Am. J. Hum. Genet. 98, 1001–1010 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Floris, C. et al. Two patients with balanced translocations and autistic disorder: CSMD3 as a candidate gene for autism found in their common 8q23 breakpoint area. Eur. J. Hum. Genet. 16, 696–704 (2008).

    CAS  PubMed  Google Scholar 

  55. Cardoso, C. et al. Periventricular heterotopia, mental retardation, and epilepsy associated with 5q14.3-q15 deletion. Neurology 72, 784–792 (2009).

    CAS  PubMed  Google Scholar 

  56. Engels, H. et al. A novel microdeletion syndrome involving 5q14.3-q15: clinical and molecular cytogenetic characterization of three patients. Eur. J. Hum. Genet. 17, 1592–1599 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Le Meur, N. et al. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J. Med. Genet. 47, 22–29 (2010).

    CAS  PubMed  Google Scholar 

  58. Zweier, M. et al. Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression. Hum. Mutat. 31, 722–733 (2010).

    CAS  PubMed  Google Scholar 

  59. Saitsu, H. et al. De novo 5q14.3 translocation 121.5-kb upstream of MEF2C in a patient with severe intellectual disability and early-onset epileptic encephalopathy. Am. J. Med. Genet. A. 155A, 2879–2884 (2011).

    PubMed  Google Scholar 

  60. Zweier, M. & Rauch, A. The MEF2C-related and 5q14.3q15 microdeletion syndrome. Mol. Syndromol. 2, 164–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dixon, J.R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lupiáñez, D.G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell 161, 1012–1025 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Lupiáñez, D.G., Spielmann, M. & Mundlos, S. Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet. 32, 225–237 (2016).

    PubMed  Google Scholar 

  64. Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).

    CAS  PubMed  Google Scholar 

  65. Mencarelli, M.A. et al. 14q12 microdeletion syndrome and congenital variant of Rett syndrome. Eur. J. Med. Genet. 52, 148–152 (2009).

    PubMed  Google Scholar 

  66. Ellaway, C.J. et al. 14q12 microdeletions excluding FOXG1 give rise to a congenital variant Rett syndrome–like phenotype. Eur. J. Hum. Genet. 21, 522–527 (2013).

    CAS  PubMed  Google Scholar 

  67. Takagi, M. et al. A 2.0 Mb microdeletion in proximal chromosome 14q12, involving regulatory elements of FOXG1, with the coding region of FOXG1 being unaffected, results in severe developmental delay, microcephaly, and hypoplasia of the corpus callosum. Eur. J. Med. Genet. 56, 526–528 (2013).

    PubMed  Google Scholar 

  68. Perche, O. et al. Dysregulation of FOXG1 pathway in a 14q12 microdeletion case. Am. J. Med. Genet. A. 161A, 3072–3077 (2013).

    PubMed  Google Scholar 

  69. Ibn-Salem, J. et al. Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biol. 15, 423 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Deng, Y., Gao, L., Wang, B. & Guo, X. HPOSim: an R package for phenotypic similarity measure and enrichment analysis based on the human phenotype ontology. PLoS One 10, e0115692 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Brunetti-Pierri, N. et al. Duplications of FOXG1 in 14q12 are associated with developmental epilepsy, mental retardation, and severe speech impairment. Eur. J. Hum. Genet. 19, 102–107 (2011).

    CAS  PubMed  Google Scholar 

  72. McDermott, S.M. et al. Drosophila Syncrip modulates the expression of mRNAs encoding key synaptic proteins required for morphology at the neuromuscular junction. RNA 20, 1593–1606 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Warburton, D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am. J. Hum. Genet. 49, 995–1013 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Brand, H. et al. Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders. Am. J. Hum. Genet. 95, 454–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chaisson, M.J. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    CAS  PubMed  Google Scholar 

  76. Huddleston, J. et al. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 24, 688–696 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lettice, L.A. et al. Enhancer-adoption as a mechanism of human developmental disease. Hum. Mutat. 32, 1492–1499 (2011).

    CAS  PubMed  Google Scholar 

  78. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hanscom, C. & Talkowski, M. Design of large-insert jumping libraries for structural variant detection using Illumina sequencing. Curr. Protoc. Hum. Genet. 80, 7.22.21–7.22.29 (2014).

    Google Scholar 

  81. Higgins, A.W. et al. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project. Am. J. Hum. Genet. 82, 712–722 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Köhler, S. et al. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am. J. Hum. Genet. 85, 457–464 (2009).

    PubMed  PubMed Central  Google Scholar 

  83. Brand, H. et al. Paired-duplication signatures mark cryptic inversions and other complex structural variation. Am. J. Hum. Genet. 97, 170–176 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. North, B.V., Curtis, D. & Sham, P.C. A note on the calculation of empirical P values from Monte Carlo procedures. Am. J. Hum. Genet. 71, 439–441 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Durand, N.C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are deeply grateful for the seminal work led by our co-author, Dorothy Warburton, who passed away during review of this manuscript. Dr. Warburton was a pioneer in cytogenetic research and a close colleague, mentor, and friend to so many in the cytogenetics community.

We wish to thank all subjects and families who have been enrolled in this study, as well as the countless genetic counselors and clinical geneticists who contributed to the ascertainment of subjects. This study was supported by the National Institutes of Health (grant GM061354 to M.E.T., J.F.G., C.C.M., and E.L.; grants MH095867 and HD081256 to M.E.T.), the March of Dimes (6-FY15-255 to M.E.T.), the European Molecular Biology Organization and the Marie Curie Actions of the European Commission (fellowship EMBO ALTF-183-2015 to C.R.), the Bettencourt-Schueller Foundation (young investigator award to C.R.), the Philippe Foundation (award to C.R.), the Harvard Medical School–Portugal Program in Translational and Clinical Research and Health Information (Fundação para a Ciência e a Tecnologia, HMSP-ICT/0016/2013 to C.C.M. and D.D.), the National Science Foundation (NSF Graduate Research Fellowship DGE1144152 to S.L.P.S.), the Fund for Scientific Research–Flanders (B.C. and S.V. are an FWO senior clinical investigator and an FWO postdoctoral researcher, respectively), Clinical Medicine Science and Technology Projects of Jiangsu Province (grant BL2013019 to Haibo Li and Hong Li), the Suzhou Key Medical Center (grant Szzx201505 to Haibo Li and Hong Li), and the Royal Society of New Zealand (Rutherford Discovery Fellowship to J.C.J.). This study was also supported by the Desmond and Ann Heathwood MGH Research Scholars award to M.E.T.

Author information

Authors and Affiliations

Authors

Contributions

M.E.T., J.F.G., C.C.M., E.C.T., J.C.H., W.P.K., N.d.L., and H.G.B. designed the study. C.R., H.B., R.L.C., V.P., I.B., C.C., J.T.G., M.R.S., M.J.v.R., and W.P.K. performed computational analyses. C.H., C.M.S., R.A., M.-A. Anderson, C.A., E.C., B.B.C., J.K., W.L., P.M., L.M., T. Mason, D.P., J.R., M.J.W., and A.W. performed cellular, molecular, or genomic experiments. T.K., E. Mitchell, J.C.H., M.-A. Abbott, O.A.A.-R., E.A., S.L.A.-E., F.S.A., Y.A., K.A.-Y., J.F.A., T.B., J.A.B., E.B., E.M.H.F.B., E.H.B., C.W.B., H.T.B., B.C., K.C., H.C., T.C., D.D., M.A.D., A.D., M.D'H., B.B.A.d.V., D.L.E., H.L.F., H.F., D.R.F., P.G., D.G., T.G., M.G., B.H.G., C.G., K.W.G., A.L.G., A.H.-K., D.J.H., M.A.H., R. Hill, R. Hochstenbach, J.D.H., R.J.H., M.W.H., A.M.I., M. Irons, M. Irving, J.C.J., S.J., T.J., J.P.J., M.C.J., S.G.K., D.A.K., P.M.K., Y.L., E.L., K.L., A.V.L., Haibo Li, Hong Li, E.C.L., C.L., E.J.L., D.L., M.J.M., G. Mandrile, C.L.M., D.M.-F., M.W.M., C.J.Z.M., B.M., S. Middelkamp, L.R.M., E. Moe, S. Mohammed, T. Mononen, M.E.M., G. Moya, A.W.N., Z.O., S. Parkash, S.P.P., S. Pereira, K.P., R.E.P.A., P.J.P., G.P., S.R., L.R., W.R., D.R., I.R., F.R., P.R., S.L.P.S., R. Shaheen, R. Sparkes, E.S., B.S., J.T., J.V.T., B.W.v.B., J.v.d.K., I.v.D.B., T.v.E., C.M.v.R.-A., S.V., C.M.L.V.-T., D.P.W., S.W., M.d.l.C.A.Y.-d.V., R.T.Z., B.L., H.G.B., N.d.L., W.P.K., E.C.T., C.C.M., and J.F.G. ascertained and enrolled subjects and provided phenotypic information. C.R. and M.E.T. wrote the manuscript, which was approved by all authors.

Corresponding author

Correspondence to Michael E Talkowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–77 and Supplementary Note. (PDF 39849 kb)

Supplementary Tables 1–12

Supplementary Tables 1–12. (XLSX 769 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redin, C., Brand, H., Collins, R. et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet 49, 36–45 (2017). https://doi.org/10.1038/ng.3720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3720

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research