Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Opportunities for therapeutic antibodies directed at G-protein-coupled receptors

A Corrigendum to this article was published on 01 September 2017

This article has been updated

Key Points

  • G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands ranging from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and play key parts in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery.

  • The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including immune and inflammatory disorders, cancer and neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review.

  • Advances in our understanding of GPCR biology in oncology, notably immuno-oncology, have made remarkable gains in recent years and facilitated further opportunities for strategic targeting either as stand-alone or combination therapies.

  • Many technical hurdles are still present but are not insurmountable given developments in stabilizing receptors using mutagenesis or additives as well as methods to overexpress receptors. These advances, combined with powerful high-throughput screening systems and an in-depth understanding of GPCR structure, biology and clinical relevance are enabling the knowledge necessary to overcome technical bottlenecks in GPCR antibody drug discovery and development.

  • It is also noticeable that the application of next-generation protein therapeutics, such as bispecifics and antibody–drug conjugates, to GPCR targets is gaining momentum.

  • Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.

Abstract

G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential mAb interactions with a GPCR.
Figure 2: The landscape of GPCRs targeted by antibodies.
Figure 3: GPCR-targeting antibodies in clinical development
Figure 4: CCR5 and the PRO 140 mAb epitope.

Similar content being viewed by others

Change history

  • 01 September 2017

    In the article, the clinical trial for the biparatopic CXCR2 nanobody was described as being for cancer instead of inflammation. This error has been corrected in the online version.

References

  1. Lagerström, M. C. & Schiöth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Zalewska, M., Siara, M. & Sajewicz, W. G protein-coupled receptors: abnormalities in signal transmission, disease states and pharmacotherapy. Acta Pol. Pharm. 71, 229–243 (2014).

    PubMed  Google Scholar 

  3. Vassart, G. & Costagliola, S. G protein-coupled receptors: mutations and endocrine diseases. Nat. Rev. Endocrinol. 7, 362–372 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Thompson, M. D., Hendy, G. N., Percy, M. E., Bichet, D. G. & Cole, D. E. G protein-coupled receptor mutations and human genetic disease. Methods Mol. Biol. 1175, 153–187 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006). This is a key publication that reviews the drug target landscape.

    Article  CAS  PubMed  Google Scholar 

  6. Eglen, R. M. & Reisine, T. New insights into GPCR function: implications for HTS. Methods Mol. Biol. 552, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Audet, M. & Bouvier, M. Restructuring G protein-coupled receptor activation. Cell 151, 14–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, J. S. & Rajagopal, S. The β-arrestins: multifunctional regulators of G protein-coupled receptors. J. Biol. Chem. 291, 8969–8977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calebiro, D. et al. Persistent cAMP-signals triggered by internalized G-protein-coupled receptor. PLoS Biol. 7, e1000172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feinstein, T. N. et al. Retromer terminates the generation of cAMP by internalized PTH receptors. Nat. Chem. Biol. 7, 278–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thomsen, A. R. et al. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signalling. Cell 166, 907–919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wisler, J. W., Xiao, K., Thomsen, A. R. & Lefkowitz, R. J. Recent developments in biased agonism. Curr. Opin. Cell Biol. 27, 18–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Luttrell, L. M., Maudsley, S. & Bohn, L. M. Fulfilling the promise of “biased” G protein-coupled receptor agonism. Mol. Pharmacol. 88, 579–588 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ullmer, C. et al. Functional monoclonal antibody acts as a biased agonist by inducing internalization of metabotropic glutamate receptor 7. Br. J. Pharmacol. 167, 1448–1466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coleman, J. L., Ngo, T. & Smith, N. J. The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era. Cell. Signal. 33, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Barwell, J., Woolley, M. J., Wheatley, M., Conner, A. C. & Poyner, D. R. The role of the extracellular loops of the CGRP receptor, a family B GPCR. Biochem. Soc. Trans. 40, 433–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. de Graaf, C., Foata, N., Engkvist, O. & Rognan, D. Molecular modelling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening. Proteins 71, 599–620 (2006).

    Article  CAS  Google Scholar 

  18. Krishnan, A., Nijmeijer, S., de Graaf, C. & Schiöth, H. B. Classification, nomenclature and structural aspects of adhesion GPCRs. Handb. Exp. Pharmacol. 234, 15–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Santos, R. et al. A comprehensice map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koglin, M. & Hutchings, C. J. Targeting G protein-coupled receptors with biologics for therapeutic use — part 2. BioProcess Int. 12, 62–65 (2014).

    CAS  Google Scholar 

  21. Congreve, M., Langmead, C. J., Mason, J. S. & Marshall, F. H. Progress in structure based drug design for G protein-coupled receptors. J. Med. Chem. 54, 4283–4311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6, 881–890 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Hutchings, C. J., Koglin, M. & Marshall, F. H. Therapeutic antibodies directed at G protein-coupled receptors. mAbs 2, 594–606 (2010). A review on the GPCR mAb pipeline in 2010 for comparison in progress and pipeline development.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Staus, D. P. et al. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies. Mol. Pharmacol. 85, 472–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Webb, D. R., Handel, T. M., Kretz-Rommel, A. & Stevens, R. C. Opportunities for functional selectivity in GPCR antibodies. Biochem. Pharmacol. 85, 147–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. BIO, Biomedtracker & Amplion. Clinical development success rates 2006–2015. BIO https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf

  27. Koglin, M. & Hutchings, C. J. Targeting G protein-coupled receptors with biologics for therapeutic use — part 1. BioProcess Int. 12, 38–45 (2014).

    CAS  Google Scholar 

  28. Herr, D. R. in International Review of Cell and Molecular Biology Vol. 297 (ed. Kwang, W. J.) 45–81 (Academic Press, 2012).

    Google Scholar 

  29. Reichert, J. M. Antibodies to watch in 2015. mAbs 7, 1–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Ecker, D. M., Jones, S. D. & Levine, H. L. The therapeutic monoclonal antibody market. mAbs 7, 9–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Reichert, J. M. Antibodies to watch in 2017. mAbs 9, 167–181 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reichert, J. M. Antibodies to watch update. The Antibody Society www.antibodysociety.org (updated 10 Jan 2017).

  33. Jo, M. & Jung, S. T. Engineering therapeutic antibodies targeting G protein-coupled receptors. Exp. Mol. Med. 48, e207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilkinson, T. C. Discovery of functional monoclonal antibodies targeting G protein-coupled receptors and ion channels. Biochem. Soc. Trans. 44, 831–837 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Tang, X. L., Wang, Y., Li, D. L., Luo, J. & Liu, M. Y. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug target. Acta Pharmacol. Sin. 33, 363–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, C. et al. G protein-coupled receptor GPR160 is associated with apoptosis and cell cycle arrest of prostate cancer cells. Oncotarget 7, 12823–12839 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Favara, D. M., Banham, A. H. & Harris, A. L. A review of ELTD1, a pro-angiogenic adhesion GPCR. Biochem. Soc. Trans. 42, 1658–1664 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Komatsu, H. Novel therapeutic GPCRs for psychiatric disorders. Int. J. Mol. Sci. 16, 14109–14121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leonard, S., Kinsella, G. K., Benetti, E. & Findlay, J. B. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci. Rep. 6, 27002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harrold, J. A. & Halford, J. C. Orphan G-protein-coupled receptors: strategies for identifying ligands and potential for use in eating disorders. Drugs R. D. 8, 287–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Valtcheva, N., Primorac, A., Jurisic, G., Hollmén, M. & Detmar, M. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. J. Biol. Chem. 288, 35736–35748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. O'Hayre, M. et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat. Rev. Cancer 13, 412–424 (2013). This review provides an overview of GPCR mutations in the cancer landscape.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bar-Shavit, R. et al. G protein-coupled receptors in cancer. Int. J. Mol. Sci. 17, E1320 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Han, X. Constitutively active chemokine CXC receptors. Adv. Pharmacol. 70, 265–301 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Ghanemi, A. Targeting G protein coupled receptor pathways as emerging molecule therapies. Saudi Pharm. J. 23, 115–129 (2015).

    Article  PubMed  Google Scholar 

  46. Zohn, I. E. et al. G2A is an oncogenic G protein-coupled receptor. Oncogene 19, 3866–3877 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Martin, C. B. et al. The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene 20, 1953–1963 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Montaner, S., Kufareva, I., Abagyan, R. & Gutkind, J. S. Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu. Rev. Pharmacol. Toxicol. 53, 331–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Willier, S., Butt, E. & Grunewald, T. G. Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: a focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol. Cell 105, 317–333 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Reubi, J. C., Mäcke, H. R. & Krenning, E. P. Candidates for peptide receptor radiotherapy today and in the future. J. Nucl. Med. 46 (Suppl. 1), 67S–75S (2005).

    CAS  PubMed  Google Scholar 

  51. Lewis, J. S. & Anderson, C. J. Radiometal-labeled somatostatin analogs for applications in cancer imaging and therapy. Methods Mol. Biol. 386, 227–240 (2007).

    CAS  PubMed  Google Scholar 

  52. Dijksterhuis, J. P., Petersen, J. & Schulte, G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR review 3. Br. J. Pharmacol. 171, 1195–1209 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tai, D. et al. Targeting the WNT signaling pathway in cancer therapeutics. Oncologist 20, 1189–1198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rimkus, T. K., Carpenter, R. L., Qasem, S., Chan, M. & Lo, H. W. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel) 8, E22 (2016).

    Article  CAS  Google Scholar 

  55. Kubota, T., Michigami, T. & Ozono, K. Wnt signaling in bone metabolism. J. Bone Miner. Metab. 27, 265–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Sen, M., Chamorro, M., Reifert, J., Coor, M. & Carson, D. Blockade of Wnt-5A/Frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum. 44, 772–781 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Nagayama, S. et al. Therapeutic potential of antibodies against FZD10, a cell-surface protein, for synovial sarcomas. Oncogene 24, 6201–6212 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Fukukawa, C. et al. Radioimmunotherapy of human synovial sarcoma using a monoclonal antibody against FZD10. Cancer Sci. 99, 432–440 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Highfill, S. L. et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl Med. 6, 237ra67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832–845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Viola, A., Sarukhan, A., Bronte, V. & Molon, B. The pros and cons of chemokines in tumor immunology. Trends Immunol. 33, 496–504 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Nijmeier, S., Vischer, H. F. & Leurs, R. Adhesion GPCRs in immunology. Biochem. Pharmacol. 114, 88–102 (2016).

    Article  CAS  Google Scholar 

  63. Stoveken, H. M., Hajduczok, A. G., Xu, L. & Tall, G. G. Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc. Natl Acad. Sci. USA 112, 6194–6199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Safaee, M. et al. CD97 is a multifunctional leukocyte receptor with distinct roles in human cancers (review). Int. J. Oncol. 43, 1343–1350 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Hsaio, C. C. et al. CD97 inhibits cell migration in human fibrosarcoma cells by modulating TIMP-2/MT1- MMP/MMP-2 activity — role of GPS autoproteolysis and functional cooperation between the N and C-terminal fragments. FEBS J. 281, 4878–4891 (2014).

    Article  CAS  Google Scholar 

  66. Hsiao, C. et al. The adhesion GPCR CD97/ADGRE5 inhibits apoptosis. Int. J. Biochem. Cell Biol. 65, 197–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Chidambaram, A., Fillmore, H. L., Van Meter, T. E., Dumur, C. I. & Broaddus, W. C. Novel report of expression and function of CD97 in malignant gliomas: correlation with Wilms tumor 1 expression and glioma cell invasiveness. J. Neurosurg. 116, 843–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Ward, Y. et al. LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res. 71, 7301–7311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ward, Y. et al. CD97 amplifies LPA receptor signaling and promotes thyroid cancer progression in a mouse model. Oncogene 32, 2726–2738 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Masiero, M. et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell 24, 229–241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ziegler, J. et al. ELTD1, an effective anti-angiogenic target for gliomas: preclinical assessment in mouse GL261 and human G55 xenograft glioma models. Neuro Oncol. 19, 175–185 (2017).

    CAS  PubMed  Google Scholar 

  72. Monk, K. R. et al. Adhesion G protein-coupled receptors: from in vitro pharmacology to in vivo mechanisms. Mol. Pharmacol. 88, 617–623 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Horuk, R. Chemokine receptor antagonists: overcoming developmental hurdles. Nat. Rev. Drug Discov. 8, 23–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Rothmeier, A. S. & Ruf, W. Protease-activated receptor 2 signaling in inflammation. Semin. Immunopathol. 34, 133–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Lee, S. E., Jeong, S. K. & Lee, S. H. Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei Med. J. 51, 808–822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vergnolle, N. Protease-activated receptors as drug targets in inflammation and pain. Pharmacol. Ther. 123, 292–309 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Y. et al. Multifunctional antibodies antibody agonists targeting glucagon-like-peptide-1, glucagon and glucose-dependent insulinotropic polypeptide receptors. Angew. Chem. Int. Ed. 55, 12475–12478 (2016).

    Article  CAS  Google Scholar 

  78. Okamoto, H. et al. Glucagon receptor blockade with a human antibody normalizes blood glucose in diabetic mice and monkeys. Endocrinology 156, 2781–2794 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Hennen, S. et al. Structural insight into antibody-mediated antagonism of the glucagon-like peptide-1 receptor. Sci. Rep. 6, 26236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ravn, P. et al. Structural and pharmacological characterization of novel potent and selective monoclonal antibody antagonists of glucose-dependent insulinotropic polypeptide receptor. J. Biol. Chem. 288, 19760–19772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hara, T. et al. Role of free fatty acid receptors in the regulation of energy metabolism. Biochim. Biophys. Acta 1841, 1292–1300 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Miyamoto, J. et al. Nutritional signaling via free fatty acid receptors. Int. J. Mol. Sci. 17, 450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Michel, M. C., Wieland, T. & Tsujimoto, G. How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch. Pharmacol. 379, 385–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Segala, E., Errey, J. C., Fiez-Vandal, C., Zhukov, A. & Cooke, R. M. Biosensor-based affinities and binding kinetics of small molecule antagonists to the adenosine A2A receptor reconstituted in HDL like particles. FEBS Lett. 589, 1399–1405 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Stenlund, P., Babcock, G. J., Sodroski, J. & Myszka, D. G. Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal. Biochem. 316, 243–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Niwa, R. et al. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res. 64, 2127–2133 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Shi, L. et al. Pharmacologic characterization of AMG 334, a potent and selective human monoclonal antibody against the calcitonin gene-related peptide receptor. J. Pharmacol. Exp. Ther. 356, 223–231 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Kuhne, M. R. et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin. Cancer Res. 19, 357–366 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Kelley, L. P. & Kinsella, B. T. The role of N-linked glycosylation in determining the surface expression G protein interaction and effector coupling of the alpha (α) isoform of the human thromboxane A2 receptor. Biochim. Biophys. Acta 1621, 192–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Colvin, R. A., Campanella, G. S., Manice, L. A. & Luster, A. D. CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. Mol. Cell. Biol. 26, 5838–5849 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rodriguez, M. C., Xie, Y. B., Wang, H., Collison, K. & Segaloff, D. L. Effects of truncations of the cytoplasmic tail of the luteinizing hormone/chorionic gonadotropin receptor on receptor-mediated hormone internalization. Mol. Endocrinol. 6, 327–336 (1992).

    CAS  PubMed  Google Scholar 

  92. Dores, M. R. & Trejo, J. Ubiquitination of G protein-coupled receptors: functional implications and drug discovery. Mol. Pharmacol. 82, 563–570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kean, J., Bortolato, A., Hollenstein, K., Marshall, F. H. & Jazayeri, A. Conformational thermostabilisation of corticotropin releasing factor receptor 1. Sci. Rep. 5, 11954 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Scott, D. J., Kummer, L., Tremmel, D. & Plückthun, A. Stabilizing membrane proteins through protein engineering. Curr. Opin. Chem. Biol. 17, 427–435 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Scott, D. J., Kummer, L., Egloff, P., Bathgate, R. A. & Plückthun, A. Immprovding the apo-state detergent stability of NTS1 with CHESS for pharmacological and structural studies. Biochim. Biophys. Acta 1838, 2817–2824 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Schütz, M. et al. Directed evolution of G protein-coupled receptors in yeast for higher functional productions in eukaryotics expression hosts. Sci. Rep. 6, 21508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Oswald, C. et al. Intracellular allosteric antagonism of the CCR9 receptor. Nature 540, 462–465 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Errey, J. C., Doré, A. S., Zhukov, A., Marshall, F. H. & Cooke, R. M. Purification of stabilized GPCRs for structural and biophysical analyses. Methods Mol. Biol. 1335, 1–15 (2015).

    Article  PubMed  Google Scholar 

  99. Hutchings, C. J. et al. Monoclonal anti-β1-adrenergic receptor antibodies activate G protein signaling in the absence of β-arrestin recruitment. mAbs 6, 246–261 (2014). This is the first proof-of-concept study for using stabilized GPCRs as antigens and for generating functional mAbs with diverse pharmacological properties.

    Article  PubMed  Google Scholar 

  100. Kleinschmidt, J. H. & Popot, J. L. Folding and stability of integral membrane proteins in amphipols. Arch. Biochem. Biophys. 564, 327–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Lee, S. C. & Pollock, N. L. Membrane proteins: is the future disc shaped? Biochem. Soc. Trans. 44, 1011–1018 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Wheatley, M. et al. GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): their nature and potential. Biochem. Soc. Trans. 44, 619–623 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Denisov, I. G. & Sligar, S. G. Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23, 481–486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schuler, M. A., Denisov, I. G. & Sligar, S. G. Nanodiscs as a new tool to examine lipid-protein interactions. Methods Mol. Biol. 974, 415–433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Frauenfeld, J. et al. A saposin-lipoprotein nanoparticle system for membrane proteins. Nat. Methods 13, 345–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rues, R. B., Dötsch, V. & Bernhard, F. Co-translational formation and pharmacological characterization of beta1-adrenergic receptor/nanodisc complexes with different lipid environments. Biochim. Biophys. Acta 1858, 1306–1316 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011). This is an informative nexus of antibodies and GPCR structural biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dunham, J. H. & Hall, R. A. Enhancement of the surface expression of G protein-coupled receptors. Trends Biotechnol. 27, 541–545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lundstrom, K. et al. Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J. Struct. Funct. Genomics 7, 77–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Akermoun, M. et al. Characterization of 16 human G protein-coupled receptors expressed in baculovirus-infected insect cells. Protein Expr. Purif. 44, 65–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Butler, M. & Spearman, M. The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol. 30, 107–112 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Johansson, T., Norris, T. & Peilot-Sjögren, H. Yellow fluorescent protein-based assay to measure GABAA channel activation and allosteric modulation in CHO-K1 cells. PLoS ONE 8, e59429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dukkipati, A., Park, H. H., Waghray, D., Fischer, S. & Garcia, K. C. BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr. Purif. 62, 160–170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Delcayre, A. et al. Exosome Display technology: applications to the development of new diagnostics and therapeutics. Blood Cells Mol. Dis. 35, 158–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Banères, J. L., Popot, J. L. & Mouillac, B. New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol. 29, 314–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Zheng, X. et al. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants. Biotechnol. Adv. 32, 564–574 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Willis, S. et al. Virus-like particles as quantitative probes of membrane protein interactions. Biochemistry 47, 6988–6990 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Loisel, T. P. et al. Recovery of homogeneous and functional beta 2-adrenergic receptors from extracellular baculovirus particles. Nat. Biotechnol. 15, 1300–1304 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Hötzel, I. et al. Efficient production of antibodies against a mammalian integral membrane protein by phage display. Protein Eng. Des. Sel. 24, 679–689 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. de Hoog, H. P. et al. Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes. PLoS ONE 9, e110847 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chi, H., Wang, X., Li, J., Ren, H. & Huang, F. Chaperonin-enhanced Escherichia coli cell-free expression of functional CXCR4. J. Biotechnol. 231, 193–200 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Boshuizen, R. S. et al. A combination of in vitro techniques for efficient discovery of functional monoclonal antibodies against human CXC chemokine receptor-2 (CXCR2). mAbs 6, 1415–1424 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Giblin, P. et al. Fully human antibodies against the Protease-Activated Receptor-2 (PAR-2) with anti-inflammatory activity. Hum. Antibodies 20, 83–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Mumaw, M. M., de la Fuente, M., Noble, D. N. & Nieman, M. T. Targeting the anionic region of human protease-activated receptor 4 inhibits platelet aggregation and thrombosis without interfering with hemostasis. J. Thromb. Haemost. 12, 1331–1341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chain, B. M., Noursadeghi, M., Gardener, M., Tsang, J. & Wright, E. HIV blocking antibodies following immunisation with chimaeric peptides coding a short N-terminal sequence of the CCR5 receptor. Vaccine 26, 5752–5759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chain, B. et al. A linear epitope in the N-terminal domain of CCR5 and its interaction with antibody. PLoS ONE 10, e0128381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Houimel, M. & Mazzucchelli, L. Identification of biologically active peptides that inhibit binding of human CXCL8 to its receptors from a random phage-epitope library. J. Leukoc. Biol. 85, 728–738 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Chambers, R. S. Antibody production using genetic immunization. Discov. Med. 3, 52–53 (2003).

    PubMed  Google Scholar 

  129. Fujimoto, A. Enhancement of antibody responses to native G protein-coupled receptors using E.coli GroEL as a molecular adjuvant in DNA immunization. J. Immunol. Methods 375, 243–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Peyrassol, X. et al. Development by genetic immunization of monovalent antibodies (nanobodies) behaving as antagonists of the human ChemR23 receptor. J. Immunol. 196, 2893–2901 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Ebersbach, H. & Geisse, S. Antigen generation and display in therapeutic antibody drug discovery — a neglected by critical player. Biotechnol. J. 7, 1433–1443 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Liu, S., Wang, S. & Lu, S. DNA immunization as a technology platform for monoclonal antibody induction. Emerg. Microbes Infect. 5, e33 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. van der Woning, B. et al. DNA immunization combined with scFv phage display identifies antagonistic GCGR specific antibodies and reveals new epitopes on the small extracellular loops. mAbs 8, 1126–1135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975). Key publication that outlines the generation of hybridomas. The 1984 Nobel Prize in Physiology or Medicine was subsequently awarded jointly to N.K. Jerne, G.J.F. Köhler and C. Milstein 'for theories concerning the specificity in development and control of the immune system and the discovery of the principle for production of monoclonal antibodies'.

    Article  PubMed  Google Scholar 

  135. Galán, A. et al. Library-based display technologies: where do we stand? Mol. Biosyst. 12, 2342–2358 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Lonberg, N. Human monoclonal antibodies from transgenic mice. Handb. Exp. Pharmacol. 181, 69–97 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  137. Macdonald, L. E. et al. Precise and in situ genetic immunization of 6 Mb of mouse immunoglobulin genes. Proc. Natl Acad. Sci. USA 111, 5147–5152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Murphy, A. J. et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc. Natl Acad. Sci. USA 111, 5153–5158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tomszak, F. et al. Selection of recombinant human antibodies. Adv. Exp. Med. Biol. 917, 23–54 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Doerner, A., Rhiel, L., Zielonka, S. & Kolmar, H. Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett. 588, 278–287 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Mazsutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).

    Article  CAS  Google Scholar 

  142. Hung, L. Y., Wang, C. H., Fu, C. Y., Gopinathan, P. & Lee, G. B. Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics. Lab. Chip 16, 2759–2774 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Szekanecz, Z. & Koch, A. E. Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 5–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Schwickart, M. et al. Evaluation of assay interference and interpretation of CXCR4 in receptor occupancy results of preclinical study with MEDI3185, a fully human antibody to CXCR4. Cytometry B Clin. Cytom. 90, 209–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Quadrini, K. J. et al. Validation of a flow cytometry-based assay to assess C5aR receptor occupancy on neutrophils and monocytes for use in drug development. Cytometry B Clin. Cytom. 90, 177–190 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Mettler Izquierdo, S. et al. High-efficiency antibody discovery achieved with multiplexed microscopy. Microscopy (Oxf.) 65, 341–352 (2016).

    Article  CAS  Google Scholar 

  147. Könitzer, J. D. et al. Generation of a highly diverse panel of antagonist chicken monoclonal antibodies against the GIP receptor. mAbs 9, 536–549 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Duvic, M., Evans, M. & Wang, C. Mogamulizumab for the treatment of cutaneous T-cell lymphoma: recent advances and clinical potential. Ther. Adv. Hematol. 7, 171–174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01015560 (2015).

  150. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02455011 (2017).

  151. Kashyap, M. K. et al. Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget 7, 2809–2822 (2016).

    PubMed  Google Scholar 

  152. Azad, B. B. et al. A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts. Oncotarget 7, 12344–12358 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02305563 (2017).

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01120457 (2015).

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01359657 (2016).

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02472977 (2017).

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02666209 (2016).

  158. Broussas, M. et al. A new anti-CXCR4 antibody that blocks the CXCR4/SDF-1 axis and mobilizes effector cells. Mol. Cancer Ther. 15, 1890–1899 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01139788 (2012).

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02954653 (2017).

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01345201 (2016).

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02005315 (2017).

  163. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01973309 (2017).

  164. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01957007 (2017).

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01608867 (2016).

  166. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02050178 (2017).

  167. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02092363 (2016).

  168. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02069145 (2016).

  169. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01469975 (2015).

  170. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02482441 (2017).

  171. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02321709 (2016).

  172. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02726334 (2017).

  173. Bird Rock Bio. Bird Rock Bio submits clinical trial authorization for the first in human clinical trial for namacizumab. birdrockbio.comhttp://www.birdrockbio.com/wp-content/uploads/2016/10/20161027.pdf (2016).

  174. Schiffgens, S. et al. Sex-specific clinicopathological significance of novel (Frizzled-7) and established (MGMT, IDH1) biomarkers in glioblastoma. Oncotarget 7, 55169–55180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Blagodatski, A., Poteryaev, D. & Katanaev, V. L. Targeting the Wnt pathways for therapies. Mol. Cell. Ther. 2, 28 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kemper, K. et al. Monoclonal antibodies against LGR5 identify human colorectal cancer stem cells. Stem Cells 30, 2378–2386 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Gong, X. et al. LGR5- targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence. Mol. Cancer Ther. 15, 1580–1590 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Rajapaksa, K. S. et al. Preclinical safety profile of a depleting antibody against CRTh2 for asthma: well tolerated despite unexpected CRTh2 expression on vascular pericytes in the central nervous system and gastric mucosa. Toxicol. Sci. 152, 72–84 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Yan, H. et al. Fully human monoclonal antibodies antagonizing the glucagon receptor improve glucose homeostasis in mice and monkeys. J. Pharmacol. Exp. Ther. 329, 102–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Lau, Y. Y. et al. Pharmacokinetic and pharmacodynamic modelling of a monoclonal antibody antagonist of glucagon receptor in male ob/ob mice. AAPS J. 11, 700–709 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang, M. Y. et al. Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway. Proc. Natl Acad. Sci. USA 112, 2503–2508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02715193 (2017).

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03117998 (2017).

  184. Viney, J. M. et al. Distinct conformation of the chemokine receptor CCR4 with implications for targeting in allergy. J. Immunol. 192, 3419–3427 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Mariani, M., Lang, R., Binda, E., Panina-Bordignon, P. & D'Ambrosio, D. Dominance of CCL22 over CCL17 in induction of chemokine receptor CCR4 desensitization and internalization on human Th2 cells. Eur. J. Immunol. 34, 231–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  186. Sun, W. et al. Blockade of MCP-1/CCR4 signaling-induced recruitment of activated regulatory cells evokes an antitumor immune response in head and neck squamous cell carcinoma. Oncotarget 7, 37714–37727 (2016). This study reports CCR4 biology, including MCP1-induced signalling that recruits activated T reg cells.

    PubMed  PubMed Central  Google Scholar 

  187. Kurose, K. et al. Increase in activated Treg in TIL in lung cancer and in vitro depletion of Treg by ADCC using an antihuman CCR4 mAb (KM2760). J. Thorac. Oncol. 10, 74–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Kurose, K. et al. Phase 1a study of FoxP3+ CD4 Treg depletion by infusion of a humanized anti-CCR4 antibody, KW-0761, in cancer patients. Clin. Cancer Res. 21, 4327–4336 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. Andrews, G., Jones, C. & Wreggett, K. A. An intracellular allosteric site for a specific class of antagonists of the CC chemokine G protein-coupled receptors CCR4 and CCR5. Mol. Pharmacol. 73, 855–867 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Ajram, L. et al. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists. Eur. J. Pharmacol. 729, 75–85 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ishii, T. et al. Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukaemia/lymphoma. Clin. Cancer Res. 16, 1520–1531 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Balkwill, F. R. The chemokine system and cancer. J. Pathol. 226, 148–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Hagemann, U. B. et al. Fully human antagonistic antibodies against CCR4 potently inhibit cell signaling and chemotaxis. PLoS ONE 9, e103776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Chang, D. K. et al. Humanization of an anti-CCR antibody that kills cutaneous T-cell lymphoma cells and abrogates suppression by T-regulatory cells. Mol. Cancer Ther. 11, 2451–2461 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Solari, R. & Pease, J. E. Targeting chemokine receptors in disease — a case study of CCR4. Eur. J. Pharmacol. 763, 169–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bayry, J., Tartour, E. & Tough, D. F. Targeting CCR4 as an emerging strategy for cancer therapy and vaccines. Trends Pharmacol. Sci. 35, 163–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Sugaya, M. et al. CCR4 is expressed on infiltrating cells in lesional skin of early mycosis fungoides and atopic dermatitis. J. Dermatol. 42, 613–615 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Yamamoto, K. et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J. Clin. Oncol. 28, 1591–1598 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Ishida, T. et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J. Clin. Oncol. 30, 837–842 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Ogura, M. et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J. Clin. Oncol. 32, 1157–1163 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Vela, M., Aris, M., Llorente, M., Garcia-Sanz, J. A. & Kremer, L. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front. Immunol. 6, 12 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02301130 (2016).

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02444793 (2017).

  204. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02476123 (2017).

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02705105 (2017).

  206. Furukawa, M. et al. Persistent complete remission of acute leukemic-phase CCR4-positive gamma-delta peripheral T-cell lymphoma by autologous stem cell transplantation with mogamulizumab. Int. J. Hematol. 102, 498–505 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Haji, S. et al. Administration of an anti-CC chemokine receptor 4 monoclonal antibody, mogamulizumab, before allogeneic bone marrow transplantation for adult T-cell leukemia/lymphoma. Bone Marrow Transplant. 51, 432–434 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Tanaka, H. et al. Development of engineered T cells expressing a chimeric CD16-CD3ζ receptor to improve the clinical efficacy of mogamulizumab therapy against adult T-cell leukemia. Clin. Cancer Res. 22, 4405–4416 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Kato, K. et al. Diffuse panbronchiolitis after humanized anti-CCR4 monoclonal antibody therapy for relapsed adult T-cell leukemia/lymphoma. Int. J. Hematol. 97, 430–432 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Ohyama, Y., Kumode, T., Eguchi, G., Yamaguchi, T. & Maeda, Y. Induction of molecular remission by using anti-CC-chemokine receptor 4 (anti-CCR4) antibodies for adult T cell leukemia: a risk of opportunistic infection after treatment with anti-CCR4 antibodies. Ann. Hematol. 93, 169–171 (2014).

    Article  PubMed  Google Scholar 

  211. Ishii, Y. et al. Cytomegalovirus pneumonia after anti-CC-chemokine receptor 4 monoclonal antibody (mogamulizumab) therapy in an angioimmunoblastic T-cell lymphoma patient. Intern. Med. 55, 673–675 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Morichika, K. et al. Recurrence of psoriasis vulgaris accompanied by treatment with C-C chemokine receptor type 4 (CCR4) antibody (mogamulizumab) therapies in a patient with adult T cell leukemia/ lymphoma: insight into autoinflammatory diseases. Intern. Med. 55, 1345–1349 (2016).

    Article  CAS  PubMed  Google Scholar 

  213. Ishitsuka, K. et al. Colitis mimicking graft-versus-host disease during treatment with the anti-CCR4 monoclonal antibody, mogamulizumab. Int. J. Hematol. 102, 493–497 (2015).

    Article  PubMed  Google Scholar 

  214. Ifuku, H. et al. Fatal reactivation of hepatitis B virus infection in a patient with adult T-cell leukemia-lymphoma receiving the anti-CC chemokine receptor 4 antibody mogamulizumab. Hepatol. Res. 45, 1363–1367 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Ishiida, T. et al. Stevens-Johnson syndrome associated with mogamulizumab treatment of adult T-cell leukemia / lymphoma. Cancer Sci. 104, 647–650 (2013).

    Article  CAS  Google Scholar 

  216. Fuji, S. Pretransplantation anti-CCR4 antibody mogamulizumab against adult T-cell leukemia/lymphoma is associated with significantly increased risks of severe and corticosteroid-refractory graft-versus-host disease, nonrelapse mortality, and overall mortality. J. Clin. Oncol. 34, 3426–3433 (2016).

    Article  PubMed  Google Scholar 

  217. Ureshino, H. et al. Effector regulatory T cells reflect the equilibrium between antitumor immunity and autoimmunity in adult T-cell leukemia. Cancer Immunol. Res. 4, 644–649 (2016).

    Article  CAS  PubMed  Google Scholar 

  218. Wilcox, R. A. Mogamulizumab: 2 birds, 1 stone. Blood 125, 1847–1848 (2015).

    Article  CAS  PubMed  Google Scholar 

  219. Ueda, R. Clinical application of anti-CCR4 monoclonal antibody. Oncology 89 (Suppl. 1), 16–21 (2015).

    Article  PubMed  Google Scholar 

  220. Zinzani, P. L. et al. Panoptic clinical review of the current and future treatment of relapsed/refractory T-cell lymphomas: peripheral T-cell lymphomas. Crit. Rev. Oncol. Hematol. 99, 214–227 (2016).

    Article  PubMed  Google Scholar 

  221. Bachelerie, F. et al. International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66, 1–79 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lee, B., Sharron, M., Montaner, L. J., Weissman, D. & Doms, R. W. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc. Natl Acad. Sci. USA 96, 5215–5220 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Martinson, J. J., Chapman, N. H., Rees, D. C., Liu, Y. T. & Clegg, J. B. Global distribution of the CCR5 gene 32-basepair deletion. Nat. Genet. 16, 100–103 (1997).

    Article  CAS  PubMed  Google Scholar 

  224. Glass, W. G. et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med. 203, 35–40 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Glass, W. G. et al. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J. Exp. Med. 202, 1087–1098 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kindberg, E. et al. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J. Infect. Dis. 197, 266–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  227. Smyth, D. J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med. 359, 2767–2777 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Maddon, P. J. et al. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47, 333–348 (1986).

    Article  CAS  PubMed  Google Scholar 

  229. Trkola, A. et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384, 184–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  230. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  CAS  PubMed  Google Scholar 

  231. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273, 1856–1862 (1996).

    Article  CAS  PubMed  Google Scholar 

  232. Paquet, A. C. et al. A decade of HIV-1 drug resistance in the United States: trends and characteristics in a large protease/reverse transcriptase and co-receptor tropism database from 2003 to 2012. Antivir. Ther. 19, 435–441 (2014).

    Article  PubMed  Google Scholar 

  233. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02483078 (2016).

  234. Brown, T. R. I am the Berlin patient: a personal reflection. AIDS Res. Hum. Retroviruses 31, 2–3 (2015). This article is the account of the Berlin patient and discusses HIV remission and subsequent research to find a cure.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Trkola, A. et al. Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. J. Virol. 75, 579–588 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Olson, W. C. et al. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. J. Virol. 73, 4145–4155 (1999). This study is the first description of the discovery of PRO 140.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Ji, C. et al. Novel CCR5 monoclonal antibodies with potent and broad-spectrum anti-HIV activities. Antiviral Res. 74, 125–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  238. Rusert, P. et al. Virus isolates during acute and chronic human immunodeficiency virus type 1 infection show distinct patterns of sensitivity to entry inhibitors. J. Virol. 79, 8454–8469 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Cilliers, T. et al. The CCR5 and CXCR4 coreceptors are both used by human immunodeficiency virus type 1 primary isolates from subtype C. J. Virol. 77, 4449–4456 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Ketas, T. J. et al. Human immunodeficiency virus type 1 attachment, coreceptor, and fusion inhibitors are active against both direct and trans infection of primary cells. J. Virol. 77, 2762–2767 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Trkola, A. et al. HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc. Natl Acad. Sci. USA 99, 395–400 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Pugach, P. et al. HIV-1 clones resistant to a small molecule CCR5 inhibitor use the inhibitor-bound form of CCR5 for entry. Virology 361, 212–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  243. Murga, J. D., Franti, M., Pevear, D. C., Maddon, P. J. & Olson, W. C. Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 50, 3289–3296 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Shearer, W. T. et al. Susceptibility of pediatric HIV-1 isolates to recombinant CD4-IgG2 (PRO 542) and humanized mAb to the chemokine receptor CCR5 (PRO 140). J. Allergy Clin. Immunol. 118, 518–521 (2006).

    Article  CAS  PubMed  Google Scholar 

  245. Binley, J. M. et al. Redox-triggered infection by disulfide-shackled human immunodeficiency virus type 1 pseudovirions. J. Virol. 77, 5678–5684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Tan, Q. et al. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341, 1387–1390 (2013).

    Article  CAS  PubMed  Google Scholar 

  247. Garcia-Perez, J. et al. Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5). J. Biol. Chem. 286, 33409–33421 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Maeda, K. et al. Involvement of the second extracellular loop and transmembrane residues of CCR5 in inhibitor binding and HIV-1 fusion: insights into the mechanism of allosteric inhibition. J. Mol. Biol. 381, 956–974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  250. Cormier, E. G. et al. Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. Proc. Natl Acad. Sci. USA 97, 5762–5767 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Qin, L. et al. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347, 1117–1122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Burg, J. S. et al. Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347, 1113–1117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Tamamis, P. & Floudas, C. A. Elucidating a key anti-HIV-1 and cancer-associated axis: the structure of CCL5 (Rantes) in complex with CCR5. Sci. Rep. 4, 5447 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Jacobson, J. M. et al. Phase 2a study of the CCR5 monoclonal antibody PRO 140 administered intravenously to HIV-infected adults. Antimicrob. Agents Chemother. 54, 4137–4142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Jacobson, J. M. et al. Anti-HIV-1 activity of weekly or biweekly treatment with subcutaneous PRO 140, a CCR5 monoclonal antibody. J. Infect. Dis. 201, 1481–1487 (2010).

    Article  CAS  PubMed  Google Scholar 

  256. Jacobson, J. M. et al. Antiviral activity of single-dose PRO 140, a CCR5 monoclonal antibody, in HIV-infected adults. J. Infect. Dis. 198, 1345–1352 (2008).

    Article  PubMed  Google Scholar 

  257. Mani, N. et al. Novel clinical trial designs for the development of new antiretroviral agents. AIDS 26, 899–907 (2012).

    Article  PubMed  Google Scholar 

  258. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01272258 (2017).

  259. Gunthard, H. F. et al. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society-USA Panel. JAMA 312, 410–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  260. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02175680 (2016).

  261. Maddon, P. J. et al. PRO140 SC monotherapy provides long-term, full virologic suppression in HIV patients. ASM Microbe (Boston, 2016).

  262. Li, J. Z. et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS 30, 343–353 (2016).

    CAS  PubMed  Google Scholar 

  263. Walker, C. S. et al. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann. Clin. Transl Neurol. 2, 595–608 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Ho, T. W. et al. Randomized controlled trial of the CGRP receptor antagonist telcagepant for migraine prevention. Neurology 83, 958–966 (2014).

    Article  CAS  PubMed  Google Scholar 

  265. Giamberardino, M. A. et al. Anti-CGRP monoclonal antibodies in migraine: current perspectives. Intern. Emerg. Med. 11, 1045–1057 (2016). This is a review of current CGRP-targeting mAbs in migraine.

    Article  PubMed  Google Scholar 

  266. Sun, H. et al. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 382–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  267. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02456740 (2017).

  268. Reichert, J. M. Antibodies to watch in 2016: mid-year update. The Antibody Society www.antibodysociety.org (updated 18 Aug 2016).

  269. Beck, A. et al. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  270. Junttila, M. R. et al. Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci. Transl Med. 7, 314ra186 (2015).

    Article  PubMed  Google Scholar 

  271. Kularatne, S. A. et al. A CXCR4-targeted site-specific antibody-drug conjugate. Angew. Chem. Int. Ed. 53, 11863–11867 (2014).

    Article  CAS  Google Scholar 

  272. Wang, E. et al. An immunosuppressive antibody-drug conjugate. J. Am. Chem. Soc. 137, 3229–3232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Asundi, J. et al. An antibody-drug conjugate targeting the endothelin B receptor for the treatment of melanoma. Clin. Cancer Res. 17, 965–975 (2011).

    Article  CAS  PubMed  Google Scholar 

  274. Asundi, J. et al. MAPK pathway inhibition enhances the efficacy of an anti-endothelin B receptor drug conjugate by inducing target expression in melanoma. Mol. Cancer Ther. 13, 1599–1610 (2014).

    Article  CAS  PubMed  Google Scholar 

  275. Spiess, C., Zhai, Q. & Carter, P. J. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol. Immunol. 67, 95–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  276. Panjideh, H. et al. Immunotherapy of B-cell non-Hodgkin lymphoma by targeting the chemokine receptor CXCR5 in a preclinical mouse model. Int. J. Cancer 135, 2623–2632 (2014).

    Article  CAS  PubMed  Google Scholar 

  277. Pardridge, W. M. Targeted delivery of proteins and gene medicines through the blood-brain barrier. Clin. Pharmacol. Ther. 97, 347–361 (2015).

    Article  CAS  PubMed  Google Scholar 

  278. Abulrob, A., Sprong, H., Van Bergen en Henegouwen, P. & Stanimirovic, D. The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J. Neurochem. 95, 1201–1214 (2005).

    Article  CAS  PubMed  Google Scholar 

  279. Webster, C. I. et al. Brain penetration, target engagement, and disposition of the blood-brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J. 30, 1927–1940 (2016).

    Article  CAS  PubMed  Google Scholar 

  280. Manglik, A., Kobilka, B. K. & Steyaert, J. Nanobodies to study G protein-coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol. 57, 19–37 (2017). This study discusses the application of nanobodies used to study GPCR structure and function.

    Article  CAS  PubMed  Google Scholar 

  281. Bradley, M. E. et al. Potent and efficacious inhibition of CXCR2 signaling by biparatopic nanobodies combining two distinct modes of action. Mol. Pharmacol. 87, 251–262 (2015). This study describes the discovery and characterization of a biparatopic nanobody targeting CXCR2 that is now in phase I trials.

    Article  CAS  PubMed  Google Scholar 

  282. Griffiths, K. et al. i-Bodies, human single domain antibodies that antagonize chemokine receptor CXCR4. J. Biol. Chem. 291, 12641–12657 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Wang, F. et al. Reshaping antibody diversity. Cell 153, 1379–1393 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Chames, P., Van Regenmortel, M., Weiss, E. & Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Bell, A. et al. Differential tumor-targeting abilities of three single-domain antibody formats. Cancer Lett. 289, 81–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  286. Kearns, J. D. et al. Enhanced targeting of the EGFR network with MM-151, and oligoclonal anti-EGFR antibody therapeutic. Mol. Cancer Ther. 14, 1625–1636 (2015).

    Article  CAS  PubMed  Google Scholar 

  287. Yang, X. et al. Developability studies before initiation of process development: improving manufacturability of monoclonal antibodies. mAbs 5, 787–794 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Jarasch, A. et al. Developability assessment during the selection of novel therapeutic antibodies. J. Pharm. Sci. 104, 1885–1898 (2015).

    Article  CAS  PubMed  Google Scholar 

  289. Tohidkia, M. R., Asadi, F., Barar, J. & Omidi, Y. Selection of potential therapeutic human single-chain Fv antibodies against cholecystokinin-B/gastrin receptor by phage display technology. BioDrugs 27, 55–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  290. Hermann, T. & Bueltmann, A. Antibodies targeting specifically human CXCR2. US Patent application 20160060347 (2016)

  291. Rossant, C. J. et al. Phage display and hybridoma generation of antibodies to human CXCR2 yields antibodies with distinct mechanisms and epitopes. mAbs 6, 1425–1438 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Douthwaite, J. A. et al. Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1. mAbs 7, 152–166 (2015).

    Article  CAS  PubMed  Google Scholar 

  293. Koth, C. M. et al. Molecular basis for negative regulation of the glucagon receptor. Proc. Natl Acad. Sci. USA 109, 14393–14398 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Mumaw, M. M., de la Fuente, M., Arachiche, A., Wahl, J. K. & Nieman, M. T. Development and characterization of monoclonal antibodies against Protease Activated Receptor 4 (PAR4). Thromb. Res. 135, 1165–1171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Harris, G. L., Creason, M. B., Brulte, G. B. & Herr, D. R. In vitro and in vivo antagonism of a G protein-coupled receptor (S1P3) with a novel blocking monoclonal antibody. PLoS ONE 7, e35129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Tehan (Heptares Therapeutics) for his assistance in compiling figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Hutchings.

Ethics declarations

Competing interests

C.J.H. is a shareholder and owns stock options of Heptares Therapeutics and Sosei Group, and has provided consultancy services to Heptares Therapeutics, TetraGenetics, Crescendo Biologics, Abcam, Tusk Therapeutics and xCella Biosciences. M.K. and F.H.M. are employees, shareholders and hold stock options of Heptares Therapeutics and Sosei Group. W.C.O. is an employee, a shareholder and holds stock options of Regeneron Pharmaceuticals.

Related links

PowerPoint slides

Glossary

Antibody-dependent cellular cytotoxicity

(ADCC). A mechanism of cell death that forms part of the humoral immune response, is mediated by the crystallizable fragment (Fc) region of an antibody and is isotype-dependent. In ADCC, an effector cell of the immune system (such as a natural killer cell, macrophage, neutrophil or eosinophil) actively lyses a target cell whose membrane surface antigens have been bound by specific antibodies. The Fc receptor on the immune cell binds to the Fc portion of the antibody.

Complement-dependent cytotoxicity

(CDC). A mechanism of cell death that is mediated by the crystallizable fragment (Fc) region of an antibody. This is a function of the complement system and is initiated by C1q binding. CDC kills pathogens by damaging their membranes and is one of the mechanisms by which antibodies can have an antitumour effect.

Antibody-dependent cellular phagocytosis

(ADCP). This is a key effector function that is mediated by the crystallizable fragment (Fc) region. It is increasingly becoming important in antibody development and relies on macrophages to attack and assimilate tumour cells following antibody binding.

Antibody–drug conjugates

(ADCs). These are composed of an antibody that is linked to a toxic payload or drug and form an important modality for the treatment of cancer.

Amphipols

These are compounds that are formed by the joining of smaller, usually repeating, amphiphilic polymers linked by covalent bonds. They are used to make membrane proteins water-soluble by trapping them with polymers rather than detergents.

Syngenic

Genetically identical, or sufficiently identical, and immunologically compatible as to allow for transplantation. In this context, it refers to the use of syngenic cells of the animal to overexpress the target and then transfer the transfected cells back into the animal as a broader species-related approach rather than an individual approach.

Hybridoma technology

This technology is a means of immortalizing an antibody-producing B cell by fusing it with a cell that is derived from a myeloma cell line to generate large amounts of antibody. However, hybridoma cell lines can be notoriously unstable.

Single-domain antibody

A single-domain antibody is the smallest antibody-derived binding structure based on the separate variable domains of an IgG molecule and is monomeric in nature.

Biparatopic

A biparatopic antibody is a type of bispecific antibody that is bivalent and directed against two different non-overlapping epitopes on the same target antigen molecule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutchings, C., Koglin, M., Olson, W. et al. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 16, 787–810 (2017). https://doi.org/10.1038/nrd.2017.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2017.91

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer