Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells

Abstract

The major difference between viruses and plasmids is the mechanism of transferring their genomic information between host cells. Here, we describe the archaeal plasmid pR1SE from an Antarctic species of haloarchaea that transfers via a mechanism similar to a virus. pR1SE encodes proteins that are found in regularly shaped membrane vesicles, and the vesicles enclose the plasmid DNA. The released vesicles are capable of infecting a plasmid-free strain, which then gains the ability to produce plasmid-containing vesicles. pR1SE can integrate and replicate as part of the host genome, resolve out with fragments of host DNA incorporated or portions of the plasmid left behind, form vesicles and transfer to new hosts. The pR1SE mechanism of transfer of DNA could represent the predecessor of a strategy used by viruses to pass on their genomic DNA and fulfil roles in gene exchange, supporting a strong evolutionary connection between plasmids and viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transmission electron micrographs of Hrr. lacusprofundi R1S1 VLPs.
Fig. 2: Plasmid map of pR1SE.
Fig. 3: Functional predictions of pR1SE proteins from region 2 that were detected in PVs.
Fig. 4: pR1SE derivatives in Hrr. lacusprofundi hosts.
Fig. 5: Overview of the PV ‘life cycle’: PV formation and infection, and pR1SE dissemination, integration and resolution.

Similar content being viewed by others

References

  1. Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, H., Peng, N., Shah, A. S., Huang, L. & She, Q. Archaeal extrachromosomal genetic elements. Microbiol. Mol. Biol. Rev. 79, 117–152 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Forterre, P. & Krupovic, M. in Viruses: Essential Agents of Life (Ed. Witzany, G.) 43–60 (Springer, Dordrecht, 2012).

  6. Holmes, E. C. What does virus evolution tell us about virus origins? J. Virol. 85, 5247–5251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gorlas, A., Krupovic, M., Forterre, P. & Geslin, G. Living side by side with a virus: characterisation of two novel plasmids from Thermococcus prieurii, a host for the spindle-shaped virus TPV1. Appl. Environ. Microbiol. 79, 3822–3828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cavicchioli, R. Microbial ecology of Antarctic aquatic systems. Nat. Rev. Microbiol. 13, 691–706 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Forterre, P., Krupovic, M., Raymann, K. & Soler, N. Plasmids from Euryarchaeota. Microbiol. Spectr2, PLAS-0027-2014 (2014).

  10. Arnold, H. P. et al. The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol. Microbiol. 34, 217–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Ye, X., Ou, J., Ni, L., Shi, W. & Shen, P. Characterization of a novel plasmid from extremely halophilic Archaea: nucleotide sequence and function analysis. FEMS. Microbiol. Lett. 221, 53–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Z. et al. Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205. Virology 434, 233–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Gaudin, M. et al. Extracellular membrane vesicles harbouring viral genomes. Environ. Microbiol. 16, 1167–1175 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Krupovic, M. & Bamford, D. H. Order to the viral universe. J. Virol. 84, 12476–12479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Naor, A., Lapierre, P., Mevarech, M., Papke, R. T. & Gophna, U. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22, 1444–1448 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Koonin, E. V. & Dolja, V. V. Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol. Mol. Biol. Rev. 78, 278–303 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krupovic, M. Recombination between RNA viruses and plasmids might have played a central role in the origin and evolution of small DNA viruses. Bioessays 34, 867–870 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Deatherage, B. L. & Cookson, B. T. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80, 1948–1957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science 343, 183–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Soler, N., Krupovic, M., Marguet, E. & Forterre, P. Membrane vesicles in natural environments: a major challenge in viral ecology. ISME J. 9, 793–796 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. DeMaere, M. Z. et al. High level of inter-genera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc. Natl. Acad. Sci. USA 110, 16939–16944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tschitschko, B. et al. Antarctic archaea–virus interactions: metaproteome-led analysis of invasion, evasion and adaptation. ISME J. 9, 2094–2107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Franzmann, P. D. et al. Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst. Appl. Microbiol. 11, 20–27 (1988).

    Article  CAS  Google Scholar 

  24. Ng, W. L. & DasSarma, S. Minimal replication origin of the 200-kilobase Halobacterium plasmid pNRC100. J. Bacteriol. 175, 4584–4596 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gotfredsen, M. & Gerdes, K. The Escherichia coli relBE genes belong to a new toxin–antitoxin gene family. Mol. Microbiol 29, 1065–1076 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, C. & Min, J. Structure and function of WD40 domain proteins. Protein Cell 2, 202–214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Faini, M., Beck, R., Wieland, F. T. & Briggs, J. A. Vesicle coats: structure, function, and general principles of assembly. Trends Cell. Biol. 23, 279–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Gürkan, C., Stagg, S. M., LaPointe, P. & Balch, W. E. The COPII cage: unifying principles of vesicle coat assembly. Nat. Rev. Mol. Cell Biol. 7, 727–738 (2006).

    Article  PubMed  Google Scholar 

  29. Ter Haar, E., Musacchio, A., Harrison, S. C. & Kirchhausen, T. Atomic structure of clathrin: a β propeller terminal domain joins an α zigzag linker. Cell 95, 563–573 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Santarella-Mellwig, R. et al. The compartmentalized bacteria of the Planctomycetes–Verrucomicrobia–Chlamydiae superphylum have membrane coat-like proteins. PLoS Biol. 8, e1000281 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Quemin, E. R. & Quax, T. E. Archaeal viruses at the cell envelope: entry and egress. Front. Microbiol 6, 552 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shaik, M. M. et al. A structural snapshot of type II pilus formation in Streptococcus pneumoniae. J. Biol. Chem. 290, 22581–22592 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duggin, I. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat. Rev. Microbiol 7, 206–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, E. Y. et al. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7, 3143–3153 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Barlowe, C., d’Enfert, C. & Schekman, R. Purification and characterization of SAR1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 268, 873–879 (1993).

    CAS  PubMed  Google Scholar 

  38. Serafini, T. et al. ADP ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239–253 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Goessweiner-Mohr, N., Arends, K., Keller, W. & Grohmann, E. Conjugative type IV secretion systems in Gram-positive bacteria. Plasmid 70, 289–302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krupovic, M., Ravantti, J. J. & Bamford, D. H. Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol. Biol. 9, 112 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jalasvuori, M., Mattila, S. & Hoikkala, V. Chasing the origin of viruses: capsid-forming genes as a life-saving preadaptation within a community of early replicators. PLoS ONE 8, e0126094 (2015).

    Article  Google Scholar 

  42. Cantin, R., Methot, S. & Tremblay, M. J. Plunder and stowaways: incorporation of cellular proteins by enveloped viruses. J. Virol. 79, 6577–6587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shaw, M. L., Stone, K. L., Colangelo, C. M., Gulcicek, E. E. & Palese, P. Cellular proteins in influenza virus particles. PLoS Pathog. 4, e1000085 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sun, E., He, J. & Zhuang, X. Dissecting the role of COPI complexes in influenza virus infection. J. Virol. 87, 2673–2685 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pietila, M. K. et al. Virion architecture unifies globally distributed pleolipoviruses infecting halophilic archaea. J. Virol. 86, 5067–5079 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dyall-Smith, M. The Halohandbook: Protocols for Halobacterial Genetics (Haloarchaea and Haloviruses, 2008); http://www.haloarchaea.com/resources/halohandbook/Halohandbook_2008_v7.pdf

  47. Williams, T. J. et al. Microbial ecology of an Antarctic hypersaline lake: genomic assessment of ecophysiology amongst dominant haloarchaea. ISME J. 8, 1645–1658 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liao, Y. et al. Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: investigating acetamidase gene function. Sci. Rep. 6, 34639 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Campbell, P. J. Primary productivity of a hypersaline Antarctic lake. Mar. Freshwat. Res. 29, 717–724 (1978).

    Article  CAS  Google Scholar 

  50. Ferris, J. M. & Burton, H. R. The annual cycle of heat content and mechanical stability of hypersaline Deep Lake, Vestfold Hills, Antarctica. Hydrobiologia 165, 115–128 (1988).

    Article  CAS  Google Scholar 

  51. Nurk, S. et al. in Research in Computational Molecular Biology (eds Deng, M., Jiang, R., Sun, F. & Zhang, X.) 158–170 (Springer, Berlin, Heidelberg, 2013).

  52. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. metaSPAdes: a new versatile de novo metagenomics assembler. Preprint at http://arxiv.org/abs/1604.03071 (2016).

  53. Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–D214 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, 213–221 (2015).

    Article  Google Scholar 

  56. Söding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005).

    Article  PubMed  Google Scholar 

  57. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carver, T., Thomson, N., Bleasby, A., Berriman, M. & Parkhill, J. DNAPlotter: 503 circular and linear interactive genome visualization. Bioinformatics 25, 119–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & McQuillan, J. A. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28, 464–469 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Michalski, A. et al. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteomics 10, M111.011015 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ishihama, Y. et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics 4, 1265–1272 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Arike, L. & Peil, L. Spectral counting label-free proteomics. Methods Mol. Biol. 1156, 213–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Ellen, A. F. et al. Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13, 67–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Vizcaíno, J. A. et al. ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination. Nat. Biotechnol. 30, 223–226 (2014).

    Article  Google Scholar 

  65. Wu, Z., Liu, H., Liu, J., Liu, X. & Xiang, H. Diversity and evolution of multiple orc/cdc6-adjacent replication origins in haloarchaea. BMC Genomics 13, 478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (DP150100244) and the Australian Antarctic Science program (project 4031). S.E. was supported by the EMBO Long-Term Fellowship ALTF 188–2014, which is co-funded by the European Commission (EMBOCOFUND2012, GA-2012-600394) and supported by Marie Curie Actions. Mass spectrometry results were obtained at the Bioanalytical Mass Spectrometry Facility (BMSF) and electron microscopy at the Electron Microscope Unit, both within the Analytical Centre of the University of New South Wales. Subsidized access to the BMSF is acknowledged. The authors thank the PRIDE team and ProteomeXchange for efficiently processing and hosting the mass spectrometry data. The authors thank A. Hancock for providing the image of Rauer 1 Lake, the Landsat Image Mosaic of Antarctica (LIMA) project for making satellite images available, S. Payne and A. Hancock for collecting Antarctic water samples, M. Allen for providing uncharacterized strains of Hrr. lacusprofundi, R. Kuchel for assistance with electron microscopy, D. Baker and I. Anishchanka for attempting structural predictions and T. Williams for comments about the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.E. and R.C. conceived and led the study and performed the primary writing of the manuscript. S.E. performed all experimental work related to VLPs and host strains, including discovering the existence of PVs. B.T. assembled DNA sequence data and analysed metagenome data. L.Z. and M.J.R. performed the mass spectrometry. All authors participated in the analysis and interpretation of the data and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Ricardo Cavicchioli.

Ethics declarations

Competing interests

The authors declare no competing financial interests and no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Notes, Supplementary References, Supplementary Figures and Supplementary Tables.

Supplementary Data File 1

pR1SEDL18 contig with annotation

Supplementary Data File 2

All proteins detected in vesicle and membrane preparations.

Supplementary Date File 3

All proteins detected in PVs purified by CsCl gradient centrifugation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdmann, S., Tschitschko, B., Zhong, L. et al. A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells. Nat Microbiol 2, 1446–1455 (2017). https://doi.org/10.1038/s41564-017-0009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0009-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing