Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic diversity in Onchocerca volvulus and its Wolbachia endosymbiont

This article has been updated

Abstract

Ongoing elimination efforts have altered the global distribution of Onchocerca volvulus, the agent of river blindness, and further population restructuring is expected as efforts continue. Therefore, a better understanding of population genetic processes and their effect on biogeography is needed to support elimination goals. We describe O. volvulus genome variation in 27 isolates from the early 1990s (before widespread mass treatment) from four distinct locales: Ecuador, Uganda, the West African forest and the West African savanna. We observed genetic substructuring between Ecuador and West Africa and between the West African forest and savanna bioclimes, with evidence of unidirectional gene flow from savanna to forest strains. We identified forest:savanna-discriminatory genomic regions and report a set of ancestry informative loci that can be used to differentiate between forest, savanna and admixed isolates, which has not previously been possible. We observed mito-nuclear discordance possibly stemming from incomplete lineage sorting. The catalogue of the nuclear, mitochondrial and endosymbiont DNA variants generated in this study will support future basic and translational onchocerciasis research, with particular relevance for ongoing control programmes, and boost efforts to characterize drug, vaccine and diagnostic targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geographical and genomic relationship between O. volvulus isolates.
Figure 2: Sequence variation in the nuclear genome of O. volvulus.
Figure 3: Ancestry-informative markers (AIMs) that exhibit substantially different allele frequencies between the West African forest and savanna populations were used to assign individual isolates to source populations and identify genetic admixture.
Figure 4: Haplotype characterization and relative abundance of Wolbachia and mitochondria in O. volvulus.

Similar content being viewed by others

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. Dunn, C. et al. The contributions of onchocerciasis control and elimination programs toward the achievement of the millennium development goals. PLoS Negl. Trop. Dis. 9, e0003703 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Crump, A., Morel, C. M. & Omura, S. The onchocerciasis chronicle: from the beginning to the end? Trends Parasitol. 28, 280–288 (2012).

    Article  PubMed  Google Scholar 

  3. Cupp, E. W., Sauerbrey, M. & Richards, F. Elimination of human onchocerciasis: history of progress and current feasibility using ivermectin (Mectizan®) monotherapy. Acta Trop. 120(Suppl. 1), S100–S108 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Coffeng, L. E. et al. African programme for onchocerciasis control 1995–2015: updated health impact estimates based on new disability weights. PLoS Negl. Trop. Dis. 8, e2759 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Progress towards eliminating onchocerciasis in the WHO region of the americas: verification by WHO of elimination of transmission in Colombia. Wkly Epidemiol. Rec. 88, 381–385 (2013).

  6. Elimination of onchocerciasis in the WHO region of the Americas: Ecuador's progress towards verification of elimination. Wkly Epidemiol. Rec. 89, 401–405 (2014).

  7. Mackenzie, C. D., Homeida, M. M., Hopkins, A. D. & Lawrence, J. C. Elimination of onchocerciasis from Africa: possible? Trends Parasitol. 28, 16–22 (2012).

    Article  PubMed  Google Scholar 

  8. Centers for Disease Control and Prevention. Progress toward elimination of onchocerciasis in the Americas—1993–2012. MMWR Morb. Mortal. Wkly. Rep. 62, 405–408 (2013).

    Google Scholar 

  9. WHO. African Programme for Onchocerciasis Control: progress report, 2013–2014. Wkly Epidemiol. Rec. 89, 545–560 (2014).

    Google Scholar 

  10. Osei-Atweneboana, M. Y., Eng, J. K. L., Boakye, D. A., Gyapong, J. O. & Prichard, R. K. Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet 369, 2021–2029 (2007).

    Article  PubMed  Google Scholar 

  11. Dadzie, K. Y., Remme, J., Baker, R. H., Rolland, A. & Thylefors, B. Ocular onchocerciasis and intensity of infection in the community. III. West African rainforest foci of the vector Simulium sanctipauli. Trop. Med. Parasitol. 41, 376–382 (1990).

    CAS  PubMed  Google Scholar 

  12. Remme, J., Dadzie, K. Y., Rolland, A. & Thylefors, B. Ocular onchocerciasis and intensity of infection in the community. I. West African savanna. Trop. Med. Parasitol. 40, 340–347 (1989).

    CAS  PubMed  Google Scholar 

  13. Botto, C., Escalante, A., Arango, M. & Yarzabal, L. Morphological differences between Venezuelan and African microfilariae of Onchocerca volvulus. J. Helminthol. 62, 345–351 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Eichner, M. & Renz, A. Differential length of Onchocerca volvulus infective larvae from the Cameroon rain forest and savanna. Trop. Med. Parasitol. 41, 29–32 (1990).

    CAS  PubMed  Google Scholar 

  15. Vuong, P. N. et al. Forest and savanna onchocerciasis: comparative morphometric histopathology of skin lesions. Trop. Med. Parasitol. 39, 105–110 (1988).

    CAS  PubMed  Google Scholar 

  16. Duke, B. O., Lewis, D. J. & Moore, P. J. Onchocerca–Simulium complexes. I. Transmission of forest and Sudan-savanna strains of Onchocerca volvulus, from Cameroon, by Simulium damnosum from various West African bioclimatic zones. Ann. Trop. Med. Parasitol. 60, 318–326 (1966).

    Article  CAS  PubMed  Google Scholar 

  17. Omar, M. S., Prost, A. & Marshall, T. F. Histochemical enzyme variation in Onchocerca volvulus microfilariae from rain-forest and Sudan-savanna areas of the Onchocerciasis Control Programme in West Africa. Bull. World Health Organ. 60, 933–944 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Flockhart, H. A., Cibulskis, R. E., Karam, M. & Albiez, E. J. Onchocerca volvulus: enzyme polymorphism in relation to the differentiation of forest and savannah strains of this parasite. Trans. R. Soc. Trop. Med. Hyg. 80, 285–292 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Higazi, T. B. et al. Wolbachia endosymbiont levels in severe and mild strains of Onchocerca volvulus. Mol. Biochem. Parasitol. 141, 109–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Zimmerman, P. A. et al. Onchocerca volvulus DNA probe classification correlates with epidemiologic patterns of blindness. J. Infect. Dis. 165, 964–968 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Fischer, P., Bamuhiiga, J., Kilian, A. H. & Buttner, D. W. Strain differentiation of Onchocerca volvulus from Uganda using DNA probes. Parasitology 112(Pt 4), 401–408 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Higazi, T. B. et al. Onchocerca volvulus: genetic diversity of parasite isolates from Sudan. Exp. Parasitol. 97, 24–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Morales-Hojas, R., Cheke, R. A. & Post, R. J. A preliminary analysis of the population genetics and molecular phylogenetics of Onchocerca volvulus (Nematoda: Filarioidea) using nuclear ribosomal second internal transcribed spacer sequences. Mem. Inst. Oswaldo Cruz 102, 879–882 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Keddie, E. M. et al. Onchocerca volvulus: limited heterogeneity in the nuclear and mitochondrial genomes. Exp. Parasitol. 93, 198–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Gallin, M. et al. Epidemiological studies of onchocerciasis in southern Benin. Trop. Med. Parasitol. 44, 69–74 (1993).

    CAS  PubMed  Google Scholar 

  26. Nutman, T. B., Parredes, W., Kubofcik, J. & Guderian, R. H. Polymerase chain reaction-based assessment after macrofilaricidal therapy in Onchocerca volvulus infection. J. Infect. Dis. 173, 773–776 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Cotton, J. A. et al. The genome of Onchocerca volvulus, agent of river blindness. Nat. Microbiol. 2, 16216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Post, R. The chromosomes of the Filariae. Filaria J. 4, 10 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Andersen, E. C. et al. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat. Genet. 44, 285–290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cutter, A. D. Integrating phylogenetics, phylogeography and population genetics through genomes and evolutionary theory. Mol. Phylogenet. Evol. 69, 1172–1185 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Johnson, N. A. & Lachance, J. The genetics of sex chromosomes: evolution and implications for hybrid incompatibility. Ann. NY Acad. Sci. 1256, E1–E22 (2012).

    Article  PubMed  Google Scholar 

  32. Zimmerman, P. A. et al. Migration of a novel DQA1* allele (DQA1*0502) from African origin to North and South America. Hum. Immunol. 42, 233–240 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Pezzi, P. J. P. & Trebeschi, P. in Coleccion Antropolgia Aplicada no 10 (eds Pezzi, P. J. P., Nunez, G. C. & Minda, P .) U.P.S. 12–98 (Quito, 1996).

    Google Scholar 

  34. Boakye, D. A., Back, C., Fiasorgbor, G. K., Sib, A. P. & Coulibaly, Y. Sibling species distributions of the Simulium damnosum complex in the west African Onchocerciasis Control Programme area during the decade 1984–93, following intensive larviciding since 1974. Med. Vet. Entomol. 12, 345–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Wilson, M. D. et al. Deforestation and the spatio-temporal distribution of savannah and forest members of the Simulium damnosum complex in southern Ghana and south-western Togo. Trans. R. Soc. Trop. Med. Hyg. 96, 632–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Baker, R. H. et al. Progress in controlling the reinvasion of windborne vectors into the western area of the Onchocerciasis Control Programme in West Africa. Philos. Trans. R. Soc. Lond. B 328, 731–747, discussion 747–750 (1990).

    Article  CAS  Google Scholar 

  37. Duke, B. O. Geographical aspects of onchocerciasis. Ann. Soc. Belge. Med. Trop. 61, 179–186 (1981).

    CAS  Google Scholar 

  38. Basáñez, M.-G., Churcher, T. S. & Grillet, M. E. Onchocerca–Simulium interactions and the population and evolutionary biology of Onchocerca volvulus. Adv. Parasitol. 68, 263–313 (2009).

    Article  PubMed  Google Scholar 

  39. Thomas, J. H. & Robertson, H. M. The Caenorhabditis chemoreceptor gene families. BMC Biol. 6, 42 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stallings, T., Cupp, M. S. & Cupp, E. W. Orientation of Onchocerca lienalis stiles (Filarioidea: Onchocercidae) microfilariae to black fly saliva. J. Med. Entomol. 39, 908–914 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector machines. ACM Trans. Intelligent Syst. Technol. 2, 27 (2011).

    Google Scholar 

  42. Taylor, M. J., Voronin, D., Johnston, K. L. & Ford, L. Wolbachia filarial interactions. Cell. Microbiol. 15, 520–526 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. McGarry, H. F., Egerton, G. L. & Taylor, M. J. Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi. Mol. Biochem. Parasitol. 135, 57–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Zimmerman, P. A., Katholi, C. R., Wooten, M. C., Lang-Unnasch, N. & Unnasch, T. R. Recent evolutionary history of American Onchocerca volvulus, based on analysis of a tandemly repeated DNA sequence family. Mol. Biol. Evol. 11, 384–392 (1994).

    CAS  PubMed  Google Scholar 

  45. Toews, D. P. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Ballard, J. W. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744 (2004).

    Article  PubMed  Google Scholar 

  47. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheke, R. A. & Garms, R. Indices of onchocerciasis transmission by different members of the Simulium damnosum complex conflict with the paradigm of forest and savanna parasite strains. Acta Trop. 125, 43–52 (2013).

    Article  PubMed  Google Scholar 

  49. Dodt, M., Roehr, J. T., Ahmed, R. & Dieterich, C. Flexbar—flexible barcode and adapter processing for next-generation sequencing platforms. MDPI Biol. 1, 895–905 (2012).

    Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McKenna, A. et al. The genome analysis toolkit: a mapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, snpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    Article  CAS  Google Scholar 

  53. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  54. Purcell, S. et al. PLINK. A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, D., Zhang, Y., Zhang, Z., Zhu, J. & Yu, J. Kaks_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics 8, 77–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Beissinger, T. M., Rosa, G. J. M., Kaeppler, S. M., Gianola, D. & de Leon, N. Defining window-boundaries for genomic analyses using smoothing spline techniques. Genet. Sel. Evol. 47, 30 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Prüfer, K. et al. FUNC: a package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics 8, 41 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dunning Hotopp, J. C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 1753–1756 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Pulido-Tamayo, S. et al. Frequency-based haplotype reconstruction from deep sequencing data of bacterial populations. Nucleic Acids Res. 43, e105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li, M. et al. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am. J. Hum. Genet. 87, 237–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    Article  CAS  PubMed  Google Scholar 

  66. Massey, F. J. Jr The Kolmogorov–Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).

    Article  Google Scholar 

  67. Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stamatakis, A., Hoover, P. & Rougemont, J. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57, 758–771 (2008).

    Article  PubMed  Google Scholar 

  73. Legendre, P., Desdevises, Y. & Bazin, E. A statistical test for host–parasite coevolution. Syst. Biol. 51, 217–234 (2002).

    Article  PubMed  Google Scholar 

  74. Oton, E. V., Quince, C., Nicol, G. W., Prosser, J. I. & Gubry-Rangin, C. Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota. ISME J. 10, 85–96 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The sequencing work was funded by NIH–NHGRI (U54HG003079) and the genetic variation analysis was funded by NIH–NIAID (R01AI081803) and the Bill & Melinda Gates Foundation (OPP GH 1083853). The study was also funded, in part, by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation. The authors thank the faculty and staff of the McDonnell Genome Institute who contributed to this study, and thank the physicians and fieldworkers in the endemic countries for their extensive help in collecting the parasite material. The unpublished RNAseq data used in this study were produced by the parasite genomics group at the Wellcome Trust Sanger Institute in collaboration with the laboratories of T. B. Nutman and S. Lustigman.

Author information

Authors and Affiliations

Authors

Contributions

Y.-J.C. and R.T. contributed equally to this work. M.M., P.U.F. and G.J.W. conceived and planned the project. M.M. led the project, and carried out analysis and manuscript preparation. T.R.U., C.T.N., T.B.N. and P.U.F. provided material. K.H.-P., P.O. and J.M. carried out sequence data production, annotation and submission. Y.C., R.T., B.A.R. and S.M.N.M performed genome-based variant studies. M.M., R.T., Y.C., S.N.M. and B.A.R. drafted, edited and wrote the manuscript.

Corresponding author

Correspondence to Makedonka Mitreva.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Supplementary information

Supplementary Information

Legends for Supplementary Tables 1-9, Supplementary Figures 1-10 (PDF 1252 kb)

Supplementary Table 1

Classifications, sources and read mapping data for each of the samples utilized (XLSX 48 kb)

Supplementary Table 2

SnpEff annotations and allele frequency data per SNP position (XLSX 11775 kb)

Supplementary Table 3

Summary of results from the FST sliding window analysis (XLSX 34 kb)

Supplementary Table 4

FST genome scan sliding window positions, summary statistics, and overlapping genes (XLSX 5074 kb)

Supplementary Table 5

Detailed functional annotation and SNP annotation per gene (XLSX 4685 kb)

Supplementary Table 6

ABBA-BABA analysis results for gene flow (XLSX 76 kb)

Supplementary Table 7

Ancestry Informative Markers for distinguishing savanna from forest O. volvulus isolates (XLSX 47 kb)

Supplementary Table 8

Variants ranked by FST (FOR:SAV comparison, minimum value 0.5) (XLSX 944 kb)

Supplementary Table 9

Sources, dates, and processing procedures for each of the whole genome shotgun libraries in each of the samples (XLSX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YJ., Tyagi, R., McNulty, S. et al. Genomic diversity in Onchocerca volvulus and its Wolbachia endosymbiont. Nat Microbiol 2, 16207 (2017). https://doi.org/10.1038/nmicrobiol.2016.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing