Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing

Abstract

Needles for percutaneous biopsies of tumour tissue can be guided by ultrasound or computed tomography. However, despite best imaging practices and operator experience, high rates of inadequate tissue sampling, especially for small lesions, are common. Here, we introduce a needle-shaped ultrathin piezoelectric microsystem that can be injected or mounted directly onto conventional biopsy needles and used to distinguish abnormal tissue during the capture of biopsy samples, through quantitative real-time measurements of variations in tissue modulus. Using well-characterized synthetic soft materials, explanted tissues and animal models, we establish experimentally and theoretically the fundamental operating principles of the microsystem, as well as key considerations in materials choices and device designs. Through systematic tests on human livers with cancerous lesions, we demonstrate that the piezoelectric microsystem provides quantitative agreement with magnetic resonance elastography, the clinical gold standard for the measurement of tissue modulus. The piezoelectric microsystem provides a foundation for the design of tools for the rapid, modulus-based characterization of tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tissue modulus probes based on ultrathin PZT actuators and sensors.
Fig. 2: Fundamental studies of device operation.
Fig. 3: In vivo and ex vivo measurements on animal model tissues.
Fig. 4: Measurements of tissue modulus performed using a sensor system laminated onto a conventional biopsy needle.
Fig. 5: Modulus-based biopsy guidance in cancerous human tissue samples.

Similar content being viewed by others

References

  1. Maharaj, B. et al. Sampling variability and its influence on the diagnostic yield of percutaneous needle biopsy of the liver. Lancet 327, 523–525 (1986).

    Article  Google Scholar 

  2. Saggese, M., Dua, D., Simmons, E., Lemech, C. & Arkenau, H.-T. Research biopsies in the context of early phase oncology studies: clinical and ethical considerations. Oncol. Rev. 7, e5 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Regev, A. et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am. J. Gastroenterol. 97, 2614–2618 (2002).

    Article  PubMed  Google Scholar 

  4. Shyamala, K., Girish, H. C. & Murgod, S. Risk of tumor cell seeding through biopsy and aspiration cytology. J. Int. Soc. Prev. Community Dent. 4, 5–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. National Cancer Institute N CI-MATCH Trial (Molecular Analysis for Therapy Choice) (2017); https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match

  6. Rago, T., Santini, F., Scutari, M., Pinchera, A. & Vitti, P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J. Clin. Endocrinol. Metab. 92, 2917–2922 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Geraghty, P. R. et al. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology 229, 475–481 (2003).

    Article  PubMed  Google Scholar 

  8. Picarelli, A. et al. Production of antiendomysial antibodies after in-vitro gliadin challenge of small intestine biopsy samples from patients with coeliac disease. Lancet 348, 1065–1067 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Abramowitch, S. D., Feola, A., Jallah, Z. & Moalli, P. A. Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S146–S158 (2009).

    Article  PubMed  Google Scholar 

  11. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (Springer, New York, 2013).

  12. Ziol, M. et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 41, 48–54 (2005).

    Article  PubMed  Google Scholar 

  13. O’Rourke, M. F. & Safar, M. E. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46, 200–204 (2005).

    Article  PubMed  Google Scholar 

  14. Li, M. et al. Modeling lung deformation: a combined deformable image registration method with spatially varying Young’s modulus estimates. Med. Phys. 40, 081902 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miller, K. & Chinzei, K. Mechanical properties of brain tissue in tension. J. Biomech. 35, 483–490 (2002).

    Article  PubMed  Google Scholar 

  16. Wickramaratne, D. et al. Fine needle elastography (FNE) device for biomechanically determining local variations of tissue mechanical properties. J. Biomech. 48, 81–88 (2015).

    Article  PubMed  Google Scholar 

  17. Yeh, W.-C. et al. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 28, 467–474 (2002).

    Article  PubMed  Google Scholar 

  18. Diridollou, S. et al. In vivo model of the mechanical properties of the human skin under suction. Skin Res. Technol. 6, 214–221 (2000).

    Article  PubMed  Google Scholar 

  19. Samani, A., Zubovits, J. & Plewes, D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52, 1565–1576 (2007).

    Article  PubMed  Google Scholar 

  20. Rho, J. Y., Roy, M. E., Tsui, T. Y. & Pharr, G. M. Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J. Biomed. Mater. Res. A 45, 48–54 (1999).

    Article  CAS  Google Scholar 

  21. Nightingale, K., Soo, M. S., Nightingale, R. & Trahey, G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med. Biol. 28, 227–235 (2002).

    Article  PubMed  Google Scholar 

  22. Castera, L., Vilgrain, V. & Angulo, P. Noninvasive evaluation of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 10, 666–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Leung, V. Y. et al. Quantitative elastography of liver fibrosis and spleen stiffness in chronic hepatitis B carriers: comparison of shear-wave elastography and transient elastography with liver biopsy correlation. Radiology 269, 910–918 (2013).

    Article  PubMed  Google Scholar 

  24. Muthupillai, R. et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 1854–1857 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Sinkus, R. et al. High-resolution tensor MR elastography for breast tumour detection. Phys. Med. Biol. 45, 1649 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Goss, B. C., McGee, K. P., Ehman, E. C., Manduca, A. & Ehman, R. L. Magnetic resonance elastography of the lung: technical feasibility. Magn. Reson. Med. 56, 1060–1066 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Agid, R. et al. CT-guided biopsy with cutting-edge needle for the diagnosis of malignant lymphoma: experience of 267 biopsies. Clin. Radiol. 58, 143–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Mirnezami, R., Nicholson, J. & Darzi, A. Preparing for precision medicine. N. Engl. J. Med. 366, 489–491 (2012).

    Article  PubMed  Google Scholar 

  29. Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Carlson, A., Bowen, A. M., Huang, Y., Nuzzo, R. G. & Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24, 5284–5318 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Jeong, J.-W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koh, A. et al. Ultrathin injectable sensors of temperature, thermal conductivity, and heat capacity for cardiac ablation monitoring. Adv. Healthc. Mater. 5, 373–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Z., Volinsky, A. A. & Gallant, N. D. Nanoindentation study of polydimethylsiloxane elastic modulus using Berkovich and flat punch tips. J. Appl. Polym. Sci. 132, 41384 (2015).

    Google Scholar 

  34. Mauck, R. L. et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122, 252–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Normand, V., Lootens, D. L., Amici, E., Plucknett, K. P. & Aymard, P. New insight into agarose gel mechanical properties. Biomacromolecules 1, 730–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Travessa, D., Ferrante, M. & den Ouden, G. Diffusion bonding of aluminium oxide to stainless steel using stress relief interlayers. Mater. Sci. Eng. A 337, 287–296 (2002).

    Article  Google Scholar 

  37. Purton, D. & Payne, J. Comparison of carbon fiber and stainless steel root canal posts. Quintessence Int. 27, 93–97 (1996).

    CAS  PubMed  Google Scholar 

  38. Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rotsch, C., Braet, F., Wisse, E. & Radmacher, M. AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol. Int. 21, 685–696 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Adler, A., Cowley, E. A., Bates, J. H. T. & Eidelman, D. H. Airway-parenchymal interdependence after airway contraction in rat lung explants. J. Appl. Physiol. 85, 231–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Wyss, H. M. et al. Biophysical properties of normal and diseased renal glomeruli. Am. J. Physiol. Cell Physiol. 300, C397–C405 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Bruix, J. & Sherman, M. Management of hepatocellular carcinoma: an update. Hepatology 53, 1020–1022 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liaw, Y.-F. & Chu, C.-M. Hepatitis B virus infection. Lancet 373, 582–592 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Bravo, A. A., Sheth, S. G. & Chopra, S. Liver biopsy. N. Engl. J. Med. 344, 495–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Ahrar, K. in Percutaneous Image-Guided Biopsy 19–32 (Springer, New York, 2014).

  46. Mariappan, Y. K., Glaser, K. J. & Ehman, R. L. Magnetic resonance elastography: a review. Clin. Anat. 23, 497–511 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Manduca, A. et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med. Image Anal. 5, 237–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Do, K., O’Sullivan Coyne, G. & Chen, A. P. An overview of the NCI precision medicine trials—NCI MATCH and MPACT. Chin. Clin. Oncol. 4, 31 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Bio-Integrated Electronics. R.O. acknowledges National Institutes of Health grants R01HL137193, R01EB24403, R21EB021148 and R03CA172738, and Mayo Clinic. R.S. acknowledges support from the Engineering and Physical Sciences Research Council (grant number EP/L016028/1) and China Scholarship Council. L.T. acknowledges support from a Beckman Institute postdoctoral fellowship at the University of Illinois Urbana-Champaign. Y.H. acknowledges support from the National Science Foundation (grant numbers 1400169, 1534120 and 1635443) and National Institutes of Health (grant number R01EB019337). The authors acknowledge N. Pallace (Media Support Services at Mayo Clinic) for expert photography during the experiments.

Author information

Authors and Affiliations

Authors

Contributions

X.Y., H.W., X.N., Y.H., R.O. and J.A.R. designed the experiment and wrote the manuscript. X.Y., H.W., X.N., R.S., M.S., H.A., Y.Y., A.K., C.M.L., A.C.S., P.T. and R.O. performed the experiments and analysed the experimental data. H.W. led the structural designs and mechanics modelling, with assistance from J.Y. L.T. and M.P. contributed to the analysis of the experimental results.

Corresponding authors

Correspondence to Yonggang Huang, Rahmi Oklu or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wang, H., Ning, X. et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat Biomed Eng 2, 165–172 (2018). https://doi.org/10.1038/s41551-018-0201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0201-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing