Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding

Abstract

β-hemoglobinopathies such as sickle cell disease (SCD) and β-thalassemia result from mutations in the adult HBB (β-globin) gene. Reactivating the developmentally silenced fetal HBG1 and HBG2 (γ-globin) genes is a therapeutic goal for treating SCD and β-thalassemia1. Some forms of hereditary persistence of fetal hemoglobin (HPFH), a rare benign condition in which individuals express the γ-globin gene throughout adulthood, are caused by point mutations in the γ-globin gene promoter at regions residing ~115 and 200 bp upstream of the transcription start site. We found that the major fetal globin gene repressors BCL11A and ZBTB7A (also known as LRF) directly bound to the sites at –115 and –200 bp, respectively. Furthermore, introduction of naturally occurring HPFH-associated mutations into erythroid cells by CRISPR–Cas9 disrupted repressor binding and raised γ-globin gene expression. These findings clarify how these HPFH-associated mutations operate and demonstrate that BCL11A and ZBTB7A are major direct repressors of the fetal globin gene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BCL11A and ZBTB7A bind the γ-globin gene proximal promoter in vitro.
Fig. 2: The in vitro DNA-binding consensus sequence for BCL11A.
Fig. 3: HPFH-associated mutations elevate γ-globin gene expression.
Fig. 4: BCL11A binds to the site at –115 bp of the γ-globin gene promoter in vivo in HUDEP-2 cells.
Fig. 5: ZBTB7A binds to the site at –200 bp of the γ-globin gene promoter in vivo.

Similar content being viewed by others

References

  1. Bauer, D. E. & Orkin, S. H. Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr. Opin. Pediatr. 23, 1–8 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilber, A., Nienhuis, A. W. & Persons, D. A. Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood 117, 3945–3953 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fessas, P. & Stamatoyannopoulos, G. Hereditary persistence of fetal hemoglobin in Greece. A study and a comparison. Blood 24, 223–240 (1964).

    CAS  PubMed  Google Scholar 

  4. Collins, F. S. et al. A point mutation in the Aγ-globin gene promoter in Greek hereditary persistence of fetal haemoglobin. Nature 313, 325–326 (1985).

    CAS  PubMed  Google Scholar 

  5. Oner, R., Kutlar, F., Gu, L. H. & Huisman, T. H. The Georgia type of nondeletional hereditary persistence of fetal hemoglobin has a C→T mutation at nucleotide–114 of the Aγ-globin gene. Blood 77, 1124–1125 (1991).

    CAS  PubMed  Google Scholar 

  6. Fucharoen, S., Shimizu, K. & Fukumaki, Y. A novel C–T transition within the distal CCAAT motif of the Gγ-globin gene in the Japanese HPFH: implication of factor binding in elevated fetal globin expression. Nucleic Acids Res. 18, 5245–5253 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gilman, J. G. et al. Distal CCAAT box deletion in the Aγ globin gene of two black adolescents with elevated fetal Aγ globin. Nucleic Acids Res. 16, 10635–10642 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zertal-Zidani, S. et al. A novel C→A transversion within the distal CCAAT motif of the Gγ-globin gene in the Algerian Gγβ+-hereditary persistence of fetal hemoglobin. Hemoglobin 23, 159–169 (1999).

    CAS  PubMed  Google Scholar 

  9. Costa, F. F. et al. The Brazilian type of nondeletional Aγ-fetal hemoglobin has a C→G substitution at nucleotide –195 of the Aγ-globin gene. Blood 76, 1896–1897 (1990).

    CAS  PubMed  Google Scholar 

  10. Giglioni, B. et al. A molecular study of a family with Greek hereditary persistence of fetal hemoglobin and β-thalassemia. EMBO J. 3, 2641–2645 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tasiopoulou, M. et al. Gγ-196 C→T, Aγ-201 C→T: two novel mutations in the promoter region of the γ-globin genes associated with nondeletional hereditary persistence of fetal hemoglobin in Greece. Blood Cells Mol. Dis. 40, 320–322 (2008).

    CAS  PubMed  Google Scholar 

  12. Amato, A. et al. Interpreting elevated fetal hemoglobin in pathology and health at the basic laboratory level: new and known γ-gene mutations associated with hereditary persistence of fetal hemoglobin. Int. J. Lab. Hematol. 36, 13–19 (2014).

    CAS  PubMed  Google Scholar 

  13. Collins, F. S., Stoeckert, C. J. Jr., Serjeant, G. R., Forget, B. G. & Weissman, S. M. Gγβ+ hereditary persistence of fetal hemoglobin: cosmid cloning and identification of a specific mutation 5′ to the Gγ gene. Proc. Natl. Acad. Sci. USA 81, 4894–4898 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hattori, Y., Kutlar, F., Kutlar, A., McKie, V. C. & Huisman, T. H. Haplotypes of βS chromosomes among patients with sickle cell anemia from Georgia. Hemoglobin 10, 623–642 (1986).

    CAS  PubMed  Google Scholar 

  15. Motum, P. I., Deng, Z. M., Huong, L. & Trent, R. J. The Australian type of nondeletional Gγ-HPFH has a C→G substitution at nucleotide –114 of the Gγ gene. Br. J. Haematol. 86, 219–221 (1994).

    CAS  PubMed  Google Scholar 

  16. Gilman, J. G., Mishima, N., Wen, X. J., Kutlar, F. & Huisman, T. H. Upstream promoter mutation associated with a modest elevation of fetal hemoglobin expression in human adults. Blood 72, 78–81 (1988).

    CAS  PubMed  Google Scholar 

  17. Uda, M. et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc. Natl. Acad. Sci. USA 105, 1620–1625 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Menzel, S. et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat. Genet. 39, 1197–1199 (2007).

    CAS  PubMed  Google Scholar 

  19. Bauer, D. E. et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342, 253–257 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sankaran, V. G. et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature 460, 1093–1097 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, J. et al. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 334, 993–996 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, S.-U. et al. LRF-mediated Dll4 repression in erythroblasts is necessary for hematopoietic stem cell maintenance. Blood 121, 918–929 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Masuda, T. et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351, 285–289 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurita, R. et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One 8, e59890 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wienert, B. et al. KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood 130, 803–807 (2017).

    CAS  PubMed  Google Scholar 

  26. Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Coghill, E. et al. Erythroid Kruppel-like factor (EKLF) coordinates erythroid cell proliferation and hemoglobinization in cell lines derived from EKLF null mice. Blood 97, 1861–1868 (2001).

    CAS  PubMed  Google Scholar 

  28. Xu, J. et al. Transcriptional silencing of γ-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev. 24, 783–798 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, P. et al. Comparative analysis of three-dimensional chromosomal architecture identifies a novel fetal hemoglobin regulatory element. Genes Dev. 31, 1704–1713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wienert, B. et al. Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin. Nat. Commun. 6, 7085 (2015).

    CAS  PubMed  Google Scholar 

  31. Sankaran, V. G. et al. Human fetal hemoglobin expression is regulated by the developmental stage–specific repressor BCL11A. Science 322, 1839–1842 (2008).

    CAS  PubMed  Google Scholar 

  32. Varala, K., Li, Y., Marshall-Colón, A., Para, A. & Coruzzi, G. M. “Hit-and-Run” leaves its mark: catalyst transcription factors and chromatin modification. BioEssays 37, 851–856 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Charoensawan, V., Martinho, C. & Wigge, P. A. “Hit-and-run”: transcription factors get caught in the act. BioEssays 37, 748–754 (2015).

    CAS  PubMed  Google Scholar 

  34. Pessler, F. & Hernandez, N. Flexible DNA binding of the BTB/POZ-domain protein FBI-1. J. Biol. Chem. 278, 29327–29335 (2003).

    CAS  PubMed  Google Scholar 

  35. Wang, J. et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22, 1798–1812 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jawaid, K., Wahlberg, K., Thein, S. L. & Best, S. Binding patterns of BCL11A in the globin and GATA1 loci and characterization of the BCL11A fetal hemoglobin locus. Blood Cells Mol. Dis. 45, 140–146 (2010).

    CAS  PubMed  Google Scholar 

  37. Canver, M. C. & Orkin, S. H. Customizing the genome as therapy for the β-hemoglobinopathies. Blood 127, 2536–2545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Traxler, E. A. et al. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat. Med. 22, 987–990 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Andrews, N. C. & Faller, D. V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19, 2499 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Crossley, M. et al. Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells. Mol. Cell. Biol. 16, 1695–1705 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmidt, D. et al. ChIP–seq: using high-throughput sequencing to discover protein–DNA interactions. Methods 48, 240–248 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kharchenko, P. V., Tolstorukov, M. Y. & Park, P. J. Design and analysis of ChIP–seq experiments for DNA-binding proteins. Nat. Biotechnol. 26, 1351–1359 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Landt, S. G. et al. ChIP–seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Machanick, P. & Bailey, T. L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  50. Huang, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Google Scholar 

  51. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Eden, E., Lipson, D., Yogev, S. & Yakhini, Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 3, e39 (2007).

    PubMed  PubMed Central  Google Scholar 

  53. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The px458 plasmid was a gift from F. Zhang (Massachusetts Institute of Technology and Harvard University) (Addgene 48138). We thank M. Porteus (Stanford University) for providing plasmids for genome editing. We acknowledge H. Lebhar and the UNSW Recombinant Products Facility (UNSW Sydney) for HPLC assistance, and C. Brownlee and E. Johansson Beves from BRIL (UNSW Sydney) for assistance with flow cytometry. This work was supported by funding from the Australian National Health and Medical Research Council to M.C. (APP1098391). B.W. was supported by a University International Postgraduate Award. G.E.M., M.S. and L.J.N. were supported by Australian Postgraduate Awards. L.Y. was supported by a China Scholarship Council scholarship granted by the Chinese government.

Author information

Authors and Affiliations

Authors

Contributions

M.C., K.G.R.Q., A.P.W.F., G.E.M. and B.W. designed the study and experiments. G.E.M. and B.W. performed and analyzed most experiments and data. L.Y. generated HUDEP-2 BCL11A-ER-V5 cells and related ChIP–seq data. M.S. and J.B. performed ChIP–seq data analysis. R.K. and Y.N. provided HUDEP-2 cells. A.P.W.F. performed ChIP–seq experiments in K562 cells. L.J.N. and A.P.W.F. performed preliminary experiments. A.P.W.F. and R.C.M.P. provided intellectual insight and feedback on the data and manuscript. G.E.M., B.W., K.G.R.Q. and M.C. wrote the manuscript. A.P.W.F., K.G.R.Q. and M.C. supervised the study. All of the authors read and approved the contents of the manuscript.

Corresponding author

Correspondence to Merlin Crossley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Pedigrees for HPFH families.

A compiled summary of previously published data is presented here describing the various HPFH mutations identified in each family, HbF levels and the genotypes of patients with HPFH mutations, β-thalassaemia (+/– β-thal) or sickle cell trait (+/– HbS). ae, Pedigrees of families with HPFH mutations in the site at –115 bp in the γ-globin promoter. fj, Pedigrees of families with HPFH mutations in the site at –200 bp in the γ-globin promoter.

Supplementary Figure 2 Probes with HPFH mutations at –115 and –200 bp do not compete as well as wild-type probes for BCL11A and ZBTB7A binding.

a, BCL11A cold competition assays show that the c.–117G>A and c.–114C>T HPFH mutant probes do not compete as well for BCL11A binding as the WT probe, confirming specificity of binding. Increasing concentrations of cold probe were added in excess as indicated (10× and 50×). Lanes 1–3 show FLAG-tagged BCL11A ZF binding to the WT probe and a super-shift with anti-FLAG antibody as a control. Probes span –128 to –100 of the γ-globin promoter bd, ZBTB7A cold competition EMSAs using HPFH mutant probes. Lane 1 contains ZBTB7A ZF bound to the hot WT probe. Increasing concentrations of cold probe were added in excess as indicated (10×, 100× and 1,000×). Probes span –209 to –187 of the γ-globin promoter. These data represent n = 1 biologically independent experiment. e,f, Densitometry analysis of the cold competition assays in ad. Binding of BCL11A and ZBTB7A to the WT probe was used as a standard to normalize binding for the densitometry.

Supplementary Figure 3 Engineering the inducible BCL11A system with an ER and V5 tag for ChIP–seq.

a, CRISPR–Cas-9 system used to tag the endogenous BCL11A gene. The sgRNA target site is indicated. The donor plasmid contains 400 bp of homology on either side of the ER-V5 construct. b, PCR screening BCL11A-ER-V5 clones in HUDEP-2 cells. Shown are three clonal populations with the desired modification (n = 3). c, Western blot of nuclear extracts from HUDEP-2 BCL11A-ER-V5 cells in the uninduced and induced (tamoxifen for 24 h) state. Shown are three BCL11A-ER-V5 clonal populations in the uninduced and induced (tamoxifen) state (n = 3). d, HUDEP-2 ChIP–qPCR, using an antibody specific to the V5 tag, demonstrating BCL11A-ER-V5 binding to the γ-globin promoter (n = 3). Shown is the mean ± s.e.m. e, Genomic distribution of BCL11A-ER-V5 ChIP–seq peaks in HUDEP-2 cells. TTS, transcription termination site. f, Distribution of BCL11A-ER-V5 ChIP–seq peaks relative to the transcription start site (TSS). g, Motifs identified within BCL11A binding sites from BCL11A ChIP–seq in HUDEP-2 cells. Shown are the top five motifs as identified using MEME-ChIP45, which incorporates multiple motif discovery programs such as MEME and DREME. The specific program used to identify the motif, the statistical significance (E value) and motif distribution within the peak list are shown. Similar known motifs are also shown. These data were generated from n = 2 biologically independent replicates. h, ChIP–qPCR of BCL11A, using an antibody specific to BCL11A, in HUDEP-2(ΔGγ) WT (n = 3), with the EGR1 gene as a positive control and the 1-kb region upstream of KLF4 as a negative control. Means ± s.e.m. are shown.

Supplementary Figure 4 Gene ontology analysis from BCL11A ChIP–seq in HUDEP-2 cells.

a,b, Gene ontology for the top 3,000 BCL11A ChIP–seq peaks analyzed with DAVID Bioinformatics Resources 6.7 and GOrilla, respectively. c,d, Gene ontology for the top 3,000 BCL11A ChIP–seq peaks located in promoters (–1,000 to +100 bp from the TSS) that do not contain the TGNCCA motif, analyzed by DAVID Bioinformatics Resources 6.7 and GOrilla, respectively. e,f, Gene ontology for the top 3,000 BCL11A ChIP–seq peaks located in promoters (–1,000 to +100 bp from the TSS) that do contain the TGNCCA motif, analyzed by DAVID Bioinformatics Resources 6.7 and GOrilla, respectively. Shown are the top 20 most significant GO terms for each analysis. The DAVID Bioinformatics Resources 6.7 and GOrilla analyses were performed on the peaks generated from n = 2 biologically independent replicates.

Supplementary Figure 5 BCL11A binds to both the proximal and distal TGACC sites in the γ-globin promoter.

a, There are two TGACC motifs within the proximal promoter of the γ-globin gene, located at approximately –115 and –90 bp with respect to the TSS. b, The BCL11A ZF can bind to both the proximal and distal TGACC sites in the γ-globin promoter via EMSA in vitro. These data represent n = 1 independent experiment.

Supplementary Figure 6 ZBTB7A ChIP–seq in K562 cells.

a, ZBTB7A binding across the γ-globin genes in four biologically independent replicates (n = 4) of ZBTB7A ChIP–seq in K562 cells. b, Shown are the top five motifs as identified using MEME-ChIP. The analysis was performed on the peaks generated from n = 4 biologically independent replicates. c, TALENs cut at the ATG of both endogenous γ-globin genes. TdTomato is integrated by homologous recombination from a donor vector with 1-kb arms of homology. The donor plasmid contains either the WT or –195C>G γ- promoter.

Supplementary Figure 7 ZBTB7A ChIP–seq in HUDEP-2 cells.

a, ZBTB7A ChIP–seq tracks across the β-globin locus in HUDEP-2(ΔGγ) WT and –195C>G cells. LCR, locus control region. These data represent n = 1 independent experiment. b, ZBTB7A binding at control promoter regions of GATA1 and KLF1 in HUDEP-2(ΔGγ) cells. These data represent n = 1 independent experiment. c,d, ZBTB7A binding motifs from ChIP–seq in HUDEP-2 cells. Shown are the top five motifs as identified using MEME-ChIP, known similar motifs and their distribution within the peak in HUDEP-2(ΔGγ) WT (c) and –195C>G (d) cells. The analysis was performed on the peaks generated from n = 1 independent experiment.

Supplementary Figure 8 Comparison between ZBTB7A ChIP–seq in K562 and HUDEP-2(ΔGγ) cells.

a, In vivo consensus motif of ZBTB7A in K562 and HUDEP-2(ΔGγ) cells. b, Distribution of ZBTB7A peaks within the genome of K562 and HUDEP-2(ΔGγ) cells. c, Location of ZBTB7A ChIP–seq peaks relative to the TSS.

Supplementary Figure 9 BCL11A and ZBTB7A bind the proximal promoter of the γ-globin gene independently.

a, BCL11A ChIP–qPCR in HUDEP-2(ΔGγ) cells with WT, –114C>A and –195C>G HPFH alleles (n = 3). Means ± s.e.m. b, ZBTB7A ChIP–qPCR in HUDEP-2(ΔGγ) cells with a WT, –114C>A or –195C>G HPFH mutation (n = 3). Means ± s.e.m.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–9

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martyn, G.E., Wienert, B., Yang, L. et al. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet 50, 498–503 (2018). https://doi.org/10.1038/s41588-018-0085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0085-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing