Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global priorities for conserving the evolutionary history of sharks, rays and chimaeras

Abstract

In an era of accelerated biodiversity loss and limited conservation resources, systematic prioritization of species and places is essential. In terrestrial vertebrates, evolutionary distinctness has been used to identify species and locations that embody the greatest share of evolutionary history. We estimate evolutionary distinctness for a large marine vertebrate radiation on a dated taxon-complete tree for all 1,192 chondrichthyan fishes (sharks, rays and chimaeras) by augmenting a new 610-species molecular phylogeny using taxonomic constraints. Chondrichthyans are by far the most evolutionarily distinct of all major radiations of jawed vertebrates—the average species embodies 26 million years of unique evolutionary history. With this metric, we identify 21 countries with the highest richness, endemism and evolutionary distinctness of threatened species as targets for conservation prioritization. On average, threatened chondrichthyans are more evolutionarily distinct—further motivating improved conservation, fisheries management and trade regulation to avoid significant pruning of the chondrichthyan tree of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A representative taxon-complete tree with phylogenetic distribution of molecular data coverage.
Fig. 2: Expected and observed ED.
Fig. 3: Distribution of ED.
Fig. 4: Relationship between median ED and traits associated with elevated threat status.
Fig. 5: Species richness, endemism and ED patterns.
Fig. 6: Congruence, incongruence and location of the hotspots of three conservation metrics (richness, endemicity and upper quartile ED).

Similar content being viewed by others

References

  1. Wilson, K. A., McBride, M. F., Bode, M. & Possingham, H. P. Prioritizing global conservation efforts. Nature 440, 337–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bottrill, M. C. et al. Is conservation triage just smart decision making? Trends Ecol. Evol. 23, 649–654 (2008).

    Article  PubMed  Google Scholar 

  3. Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl. Acad. Sci. USA 110, 1–5 (2013).

    Article  Google Scholar 

  4. Andelman, S. J. & Fagan, W. F. Umbrellas and flagships: efficient conservation surrogates or expensive mistakes? Proc. Natl. Acad. Sci. USA 97, 5954–5959 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article  Google Scholar 

  6. Faith, D. P. in The Routledge Handbook of Philosophy of Biodiversity (eds Garson, J., Plutynski, A. & Sarkar, S.) 69-85 (Routledge, New York, NY, 2017).

  7. Vane-Wright, R. I., Humphries, C. J. & Williams, P. H. What to protect? Systematics and the agony of choice. Biol. Conserv. 55, 235–254 (1991).

    Article  Google Scholar 

  8. Jetz, W. et al. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Stuart, S. N., Wilson, E. O., McNeely, J. A., Mittermeier, R. A. & Rodríguez, J. P. The barometer of life. Science 328, 177 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS. ONE 2, e296 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  11. Isaac, N. J. B., Redding, D. W., Meredith, H. M. & Safi, K. Phylogenetically-informed priorities for amphibian conservation. PLoS. ONE 7, 1–8 (2012).

    Article  Google Scholar 

  12. Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204 (Part A), 23–31 (2016).

    Article  Google Scholar 

  13. Heupel, M. R., Knip, D. M., Simpfendorfer, C. A. & Dulvy, N. K. Sizing up the ecological role of sharks as predators. Mar. Ecol. Prog. Ser. 495, 291–298 (2014).

    Article  Google Scholar 

  14. Hussey, N. E. et al. Expanded trophic complexity among large sharks. Food Webs 4, 1–7 (2015).

    Article  Google Scholar 

  15. Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Wirsing, A. & Dill, L. M. Patterns of top-down control in a seagrass ecosystem: Could a roving apex predator induce a behaviour-mediated trophic cascade? J. Anim. Ecol. 82, 1192–1202 (2013).

    Article  PubMed  Google Scholar 

  16. Ruppert, J. L. W., Travers, M. J., Smith, L. L., Fortin, M. J. & Meekan, M. G. Caught in the middle: combined impacts of shark removal and coral loss on the fish communities of coral reefs. PLoS. ONE 8, 1–9 (2013).

    Article  Google Scholar 

  17. Mull, C. G., Yopak, K. E. & Dulvy, N. K. Does more maternal investment mean a larger brain? Evolutionary relationships between reproductive mode and brain size in chondrichthyans. Mar. Freshw. Res. 62, 567–575 (2011).

    Article  Google Scholar 

  18. Dulvy, N. K. & Reynolds, J. D. Evolutionary transitions among egg−laying, live−bearing and maternal inputs in sharks and rays. Proc. R. Soc. B Biol. Sci. 264, 1309–1315 (1997).

    Article  Google Scholar 

  19. Davidson, L. N. K., Krawchuk, M. A. & Dulvy, N. K. Why have global shark and ray landings declined: Improved management or overfishing? Fish Fish 17, 438–458 (2016).

    Article  Google Scholar 

  20. Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, e00590 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  21. Redding, D. W. Incorporating Genetic Distinctness and Reserve Occupancy into a Cconservation Prioritisation Approach. MSc Thesis, Univ. East Anglia (2003).

  22. Kuhn, T. S., Mooers, A. & Thomas, G. H. A simple polytomy resolver for dated phylogenies. Methods Ecol. Evol. 2, 427–436 (2011).

    Article  Google Scholar 

  23. Thomas, G. H. et al. PASTIS: an R package to facilitate phylogenetic assembly with soft taxonomic inferences. Methods Ecol. Evol. 4, 1011–1017 (2013).

    Article  Google Scholar 

  24. McClenachan, L., Cooper, A. B., Carpenter, K. E. & Dulvy, N. K. Extinction risk and bottlenecks in the conservation of charismatic marine species. Conserv. Lett. 5, 73–80 (2012).

    Article  Google Scholar 

  25. Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    Article  PubMed  Google Scholar 

  27. IUCN The IUCN Red List of Threatened Species Version 2014.1 (IUCN, 2014).

  28. Verde Arregoitia, L. D., Blomberg, S. P. & Fisher, D. O. Phylogenetic correlates of extinction risk in mammals: species in older lineages are not at greater risk. Proc. Biol. Sci. 280, 20131092 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  29. Field, I. C., Meekan, M. G., Buckworth, R. C. & Bradshaw, C. J. A. Susceptibility of sharks, rays and chimaeras to global extinction. Adv. Mar. Biol. 56, 275–363 (2009).

    Article  PubMed  Google Scholar 

  30. Dulvy, N. K. et al. Challeneges and priorities in shark and ray conservation. Curr. Biol. 27, R565–R572 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Lucifora, L. O., García, V. B. & Worm, B. Global diversity hotspots and conservation priorities for sharks. PLoS. ONE 6, e19356 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Trebilco, R. et al. Mapping species richness and human impact drivers to inform global pelagic conservation prioritisation. Biol. Conserv. 144, 1758–1766 (2011).

    Article  Google Scholar 

  33. Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Nat. Ecol. Evol. 1, 0040 (2017).

    Article  Google Scholar 

  34. Rosauer, D. F. & Mooers, A. O. Nurturing the use of evolutionary diversity in nature conservation. Trends Ecol. Evol. 28, 322–323 (2013).

    Article  PubMed  Google Scholar 

  35. Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. Contribution of rarity and commonness to patterns of species richness. Ecol. Lett. 7, 81–87 (2004).

    Article  Google Scholar 

  36. Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Clarke, S. C. et al. Global estimates of shark catches using trade records from commercial markets. Ecol. Lett. 9, 1115–1126 (2006).

    Article  PubMed  Google Scholar 

  39. McClenachan, L., Cooper, A. B. & Dulvy, N. K. Rethinking trade-driven extinction risk in marine and terrestrial megafauna. Curr. Biol. 26, 1–7 (2016).

    Article  Google Scholar 

  40. Curtis, T. H. et al. Seasonal distribution and historic trends in abundance of white sharks, Carcharodon carcharias, in the western North Atlantic Ocean. PLoS. ONE 9, e99240 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  41. Lowe, C. G. et al. in Global Perspectives on the Biology and Life History of the White Shark (ed. Domeier, M.) 169–186 (CRC Press, Boca Raton, FL 2012).

  42. Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R97–R98 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Giles, J., Riginos, C., Naylor, G., Dharmadi & Ovenden, J. Genetic and phenotypic diversity in the wedgefish Rhynchobatus australiae, a threatened ray of high value in the shark fin trade. Mar. Ecol. Prog. Ser. 548, 165–180 (2016).

    Article  CAS  Google Scholar 

  44. Devitt, K. R., Adams, V. M. & Kyne, P. M. Australia’s protected area network fails to adequately protect the world’s most threatened marine fishes. Glob. Ecol. Conserv. 3, 401–411 (2015).

    Article  Google Scholar 

  45. Dulvy, N. K. et al. Ghosts of the coast: global extinction risk and conservation of sawfishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 134–153 (2016).

    Article  Google Scholar 

  46. Moore, A. Guitarfishes: the next sawfishes? Extinction vulnerabilites and an urgent call for conservaion action.Endanger. Species Res. 34, 75–88 (2017).

    Article  Google Scholar 

  47. Davies, T. J. & Buckley, L. B. Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philos. Trans. R. Soc. B Biol. Sci. 366, 2414–2425 (2011).

    Article  Google Scholar 

  48. Fernandes, P. et al. Fisheries conservation reveals regional divergence in Europe’s marine fish risk.Nat. Ecol. Evol. 1, 0170 (2017).

    Article  Google Scholar 

  49. Peterson, C. D. et al. Preliminary recovery of coastal sharks in the south-east United States.Fish. Fish. 18, 845–859 (2017).

    Article  Google Scholar 

  50. White, W. T. & Kyne, P. M. The status of chondrichthyan conservation in the Indo-Australasian region. J. Fish. Biol. 76, 2090–2117 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Naylor, G. J. P. et al. in The Biology of Sharks and Their Relatives (eds Carrier, J. C., Musick, J. A. & Heithaus, M. R.) 31–56 (CRC Press, Boca Raton, FL, 2012).

  52. Naylor, G. J. P. et al. A DNA sequence-based approach to the identification of shark and ray species and its implications for globa elasmobranch diversity and parasitology. Bull. Am. Mus. Nat. Hist. 367, 1–262 (2012).

    Article  Google Scholar 

  53. Naylor, G. J. P., Ryburn, J. A., Fedrigo, O. & López, J. A. in Reproductive Biology and Phylogeny of Chondrichthyes: Sharks, Batoids, and Chimaeras (eds Hamlett, W. C. & Jamieson, B. G.) 1–25 (CRC Press, Boca Raton, FL, 2005).

  54. White, W. T. & Last, P. R. A review of the taxonomy of chondrichthyan fishes: a modern perspective. J. Fish. Biol. 80, 901–917 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Last, P. R. et al. Rays of the World (CSIRO Publishing, Clayton South, 2016).

  56. Last, P. R. et al. in Rays of the World, Supplementary Information 1–10 (CSIRO Publishing, Clayton South, 2016).

  57. Last, P. R., Weigmann, S. & Yang, L. in Rays of the World, Supplementary Information 11–34 (CSIRO Publishing, Clayton South, 2016).

  58. Weigmann, S. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. J. Fish. Biol. 88, 837–1037 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Weigmann, S. Reply to Borsa (2017): comment on ‘Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity by Weigmann (2016)’. J. Fish. Biol. 88, 837–1037 (2017).

    Article  Google Scholar 

  60. Ebert, D. A., Fowler, S. L. & Compagno, L. J. V. Sharks of the World: A Fully Illustrated Guide (Wild Nature Press, Plymouth, 2013).

  61. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Katoh, K., Kuma, K. I., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  PubMed  Google Scholar 

  67. Yang, Z. Computational Molecular Evolution (Oxford Univ. Press, Oxford, 2006).

  68. Inoue, J. G. et al. Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective. Mol. Biol. Evol. 27, 2576–2586 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Aschliman, N. C. et al. Body plan convergence in the evolution of skates and rays (Chondrichthyes: Batoidea). Mol. Phylogenet. Evol. 63, 28–42 (2012).

    Article  PubMed  Google Scholar 

  70. Aberer, A. J., Krompass, D. & Stamatakis, A. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst. Biol. 62, 162–166 (2013).

    Article  PubMed  Google Scholar 

  71. Parham, J. F. et al. Best practices for justifying fossil calibrations. Syst. Biol. 61, 346–359 (2012).

    Article  PubMed  Google Scholar 

  72. Benton, M. J. et al. Constraints on the timescale of animal evolutionary history. Palaeontol. Electron. 18, 1–107 (2015).

    Google Scholar 

  73. Lund, R. & Grogan, E. D. Relationships of the Chimaeriformes and the basal radiation of the Chondrichthyes. Rev. Fish. Biol. Fish. 7, 65–123 (1997).

    Article  Google Scholar 

  74. Claeson, K. M., Underwood, C. J. & Ward, D. J. Tingitanius tenuimandibulus, a new platyrhinid batoid from the Turonian (Cretaceous) of Morocco and the cretaceous radiation of the Platyrhinidae. J. Vertebr. Paleontol. 33, 1019–1036 (2013).

    Article  Google Scholar 

  75. Carvalho, M. R. De & Maisey, J. G. Phylogenetic relationships of the Late Jurassic shark Protospinax WOODWARD 1919 (Chondrichthyes: Elasmobranchii). Syst. Paleoecol. 7, 9–46 (1996).

    Google Scholar 

  76. Ho, S. Y. W. & Phillips, M. J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367–380 (2009).

    Article  PubMed  Google Scholar 

  77. Smith, S. A. & O’Meara, B. C. TreePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Venkatesh, B. et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174–179 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Hartmann, K. The equivalence of two phylogenetic biodiversity measures: the Shapley value and fair proportion index. J. Math. Biol. 67, 1163–1170 (2013).

    Article  PubMed  Google Scholar 

  82. Fuchs, M. & Jin, E. Y. Equality of Shapley value and fair proportion index in phylogenetic trees. J. Math. Biol. 71, 1133–1147 (2015).

    Article  PubMed  Google Scholar 

  83. Shapley, L. S. A value for n-person games. Ann. Math. Stud. 28, 307–318 (1953).

    Google Scholar 

  84. Haake, C.-J., Kashiwada, A. & Su, F. E. The Shapley value of phylogenetic trees. J. Math. Biol. 56, 479–497 (2008).

    Article  PubMed  Google Scholar 

  85. Magallón, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).

    Article  PubMed  Google Scholar 

  86. Mooers, A., Gascuel, O., Stadler, T., Li, H. & Steel, M. Branch lengths on birth-death trees and the expected loss of phylogenetic diversity. Syst. Biol. 61, 195–203 (2012).

    Article  PubMed  Google Scholar 

  87. Redding, D. W., Mazel, F. & Mooers, A. Measuring evolutionary isolation for conservation. PLoS. ONE 9, 1–15 (2014).

    Article  Google Scholar 

  88. Orme, D. et al. caper: comparative analysis of phylogenetics and evolution in R (2012).

  89. Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).

    Article  PubMed  Google Scholar 

  90. Rodrigues, A. S. L. Improving coarse species distribution data for conservation planning in biodiversity-rich, data-poor, regions: no easy shortcuts. Anim. Conserv. 14, 108–110 (2011).

    Article  Google Scholar 

  91. Jenness Enterprises Repeating shapes for ArcGIS (Jenness Enterprises, 2012).

  92. Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Pompa, S., Ehrlich, P. R. & Ceballos, G. Global distribution and conservation of marine mammals. Proc. Natl. Acad. Sci. USA 108, 13600–13605 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Davidson, A. D. et al. Drivers and hotspots of extinction risk in marine mammals. Proc. Natl. Acad. Sci. USA 109, 3395–3400 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. R Core Team R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).

  96. Wickham, H. The split–apply–combine strategy for data. J. Stat. Softw. 40, 1–29 (2011).

    Google Scholar 

  97. Pebesma, E. J. & Bivand, R. S. Classes and method for spatial data in R. R. News 5, 9–13 (2005).

    Google Scholar 

  98. ESRI ArcGIS (ESRI, 2011).

  99. VLIZ World EEZ v7 (VLIZ, 2014).

Download references

Acknowledgements

We are grateful to A. J. Aberer for useful discussion of rogue taxon exclusion, D. Ebert and W. White for taxonomic guidance, G. J. P. Naylor, X. Vélez-Zauzo, A. Godknecht, M. Gollock, H. Koldewey and M. D’Angelo for research support, and B. Corrie and M. Siegert for computing access. We thank all IUCN Shark Specialist Group members and all additional experts who have contributed data and their expertise to IUCN Red List assessments. This work was carried out at the Interdisciplinary Research in Mathematics and Computer Sciences Centre, Simon Fraser University (http://www.irmacs.sfu.ca), the Swiss Shark Foundation computing cluster and Compute Canada’s Westgrid computing network. This study was funded by Save Our Seas Foundation, Rufford Foundation, Zoological Society London, Natural Science and Engineering Research Council Discovery and Accelerator Awards, and Canada Research Chairs Program. Shark and ray silhouettes in Figs. 1, 2 and 4 were created by C.G.M from images by R. Aidan Martin; all silhouettes in Fig. 3 were created by M. Dando.

Author information

Authors and Affiliations

Authors

Contributions

N.K.D. and A.O.M. conceived and led the project, R.W.S., C.G.M., J.B.J., T.S.K., N.C.A., L.N.K.D. and A.O.M. designed the project. N.C.A., R.W.S., C.G.M., J.B.J., G.J.S. and L.N.K.D. acquired or provided data. R.W.S., T.S.K., J.B.J. and L.N.K.D. contributed essential code and analyses. R.W.S., C.G.M., L.N.K.D., N.K.D. and A.O.M. drafted and revised the paper. R.W.S. designed and led the phylogenetic work, C.G.M. supported the phylogenetic work and led the subsequent statistical analyses, and L.N.K.D. led the spatial analyses.

Corresponding authors

Correspondence to Christopher G. Mull, Nicholas K. Dulvy or Arne O. Mooers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary results and tables

Life Sciences Reporting Summary

Supplementary table 1

Master taxonomy dataset

Supplementary table 2

Accession dataset

Supplementary table 3

Fossil calibration dataset

Supplementary table 4

Mixed clade and tree modification dataset

Supplementary table 5

Vertebrate comparison dataset

Supplementary table 6

Recently described species dataset

Supplementary code 1

Species addition R script

Supplementary code 2

Polytomy resolver R script

Supplementary code 3

XML creator R script

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, R.W., Mull, C.G., Kuhn, T.S. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat Ecol Evol 2, 288–298 (2018). https://doi.org/10.1038/s41559-017-0448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0448-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing