Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis

Abstract

Detection of nuclear biomarkers, such as nucleic acids and nuclear proteins, is critical for early-stage cancer diagnosis and prognosis. Conventional methods relying on morphological assessment of cell nuclei in histopathology slides may be subjective, whereas colorimetric immunohistochemical and fluorescence-based imaging are limited by strong light absorption, broad emission bands and low contrast. Here, we describe the development and use of a scanning laser-emission-based microscope that maps lasing emissions from nuclear biomarkers in human tissues. Forty-one tissue samples from 35 patients labelled with site-specific and biomarker-specific antibody-conjugated dyes were sandwiched in a Fabry–Pérot microcavity while an excitation laser beam built a laser-emission image. We observed multiple subcellular lasing emissions from cancer cell nuclei, with a threshold of tens of μJ mm−2, submicrometre resolution (<700 nm), and a lasing band in the few-nanometre range. Different lasing thresholds of nuclei in cancer and normal tissues enabled the identification and multiplexed detection of nuclear proteomic biomarkers, with high sensitivity for early-stage cancer diagnosis. Laser-emission-based cancer screening and immunodiagnosis might find use in precision medicine and facilitate research in cell biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zink, D., Fischer, A. H. & Nickerson, J. A. Nuclear structure in cancer cells. Nat. Rev. Cancer4, 677–687 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Swarup, V. & Rajeswari, M. Circulating (cell-free) nucleic acids–a promising, non-invasive tool for early detection of several human diseases. FEBS Lett.581, 795–799 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Schwarzenbach, H., Hoon, D. S. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer11, 426–437 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Morgan, M. A. & Shilatifard, A. Chromatin signatures of cancer. Genes Dev.29, 238–249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lo, H. & Hung, M. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br. J. Cancer94, 184–188 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Traynor, A. M. et al. Nuclear EGFR protein expression predicts poor survival in early stage non-small cell lung cancer. Lung Cancer81, 138–141 (2013).

    Article  PubMed  Google Scholar 

  7. Wang, L. et al. Evaluation of Raman spectroscopy for diagnosing EGFR mutation status in lung adenocarcinoma. Analyst139, 455–463 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Sarkis, A. S. et al. Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J. Clin. Oncol.13, 1384–1390 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Manne, U. et al. Prognostic significance of Bcl-2 expression and p53 nuclear accumulation in colorectal adenocarcinoma. Int. J. Cancer74, 346–358 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Porter, L. A. & Donoghue, D. J. Cyclin B1 and CDK1: nuclear localization and upstream regulators. Prog. Cell Cycle Res.5, 335–348 (2003).

    PubMed  Google Scholar 

  11. Konety, B. R. & Getzenberg, R. H. Nuclear structural proteins as biomarkers of cancer. J. Cell. Biochem.75, 183–191 (1999).

    Article  Google Scholar 

  12. Rakha, E. A. et al. Prognostic markers in triple‐negative breast cancer. Cancer109, 25–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Dekanić, A. et al. Strong nuclear EGFR expression in colorectal carcinomas is associated with cyclin-D1 but not with gene EGFR amplification. Diagn. Pathol.6, 1 (2011).

    Article  CAS  Google Scholar 

  14. Pereira, N. B. et al. Nuclear localization of epidermal growth factor receptor (EGFR) in ameloblastomas. Oncotarget6, 9679 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xia, W. et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol. Carcinog.48, 610–617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Müller, W., Schneiders, A., Hommel, G. & Gabbert, H. Prognostic value of bcl-2 expression in gastric cancer. Anticancer Res.18, 4699–4704 (1997).

    Google Scholar 

  17. Beer, D. G. et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med.8, 816–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer5, 845–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Irish, J. M., Kotecha, N. & Nolan, G. P. Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat. Rev. Cancer6, 146–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Levenson, R. M., Borowsky, A. D. & Angelo, M. Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab Invest.95, 397–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou, L. et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun.6, 6938 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Collins, L. G., Haines, C., Perkel, R. & Enck, R. E. Lung cancer: diagnosis and management. Am. Fam. Physician75, 56–63 (2007).

    PubMed  Google Scholar 

  23. Silvestri, G. A. et al. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines. Chest132, 178S–201S (2007).

    Article  PubMed  Google Scholar 

  24. Yu, K.-H. et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun.7, 12474 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vansteenkiste, J., Dooms, C. & De Leyn, P. Early stage non-small-cell lung cancer: challenges in staging and adjuvant treatment: evidence-based staging. Ann. Oncol.21, vii189–vii195 (2010).

    Article  PubMed  Google Scholar 

  26. Shi, S.-R., Cote, R. J. & Taylor, C. R. Antigen retrieval immunohistochemistry: past, present, and future. J. Histochem. Cytochem.45, 327–343 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Arnould, L. et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism. Br. J. Cancer94, 259–267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl Sci. Acad. USA110, 11982–11987 (2013).

    Article  CAS  Google Scholar 

  29. Wu, L. & Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev.44, 2963–2997 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Gourley, P. Semiconductor microlasers: a new approach to cell-structure analysis. Nat. Med.2, 942–944 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Gourley, P. L. Biocavity laser for high-speed cell and tumour biology. J. Phys. D36, R228 (2003).

    Article  CAS  Google Scholar 

  32. Gourley, P. et al. Ultrafast nanolaser flow device for detecting cancer in single cells. Biomed. Microdev.7, 331–339 (2005).

    Article  Google Scholar 

  33. Gather, M. C. & Yun, S. H. Single-cell biological lasers. Nat. Photon.5, 406–410 (2011).

    Article  CAS  Google Scholar 

  34. Sun, Y. & Fan, X. Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers. Angew. Chem. Int. Ed.51, 1236–1239 (2012).

    Article  CAS  Google Scholar 

  35. Fan, X. & Yun, S.-H. The potential of optofluidic biolasers. Nat. Methods11, 141–147 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nizamoglu, S., Gather, M. C. & Yun, S. H. All-biomaterial laser using vitamin and biopolymers. Adv. Mater.25, 5943–5947 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Humar, M., Gather, M. C. & Yun, S.-H. Cellular dye lasers: lasing thresholds and sensing in a planar resonator. Opt. Express23, 27865–27879 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Humar, M. & Yun, S. H. Intracellular microlasers. Nat. Photon.9, 572–576 (2015).

    Article  CAS  Google Scholar 

  39. Schubert, M. et al. Lasing within live cells containing intracellular optical micro-resonators for barcode-type cell tagging and tracking. Nano Lett.15, 5647–5652 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Wei, Y. et al. Starch-based biological microlasers. ACS Nano11, 597–602 (2016).

    Article  PubMed  CAS  Google Scholar 

  41. Chen, Y.-C., Chen, Q. & Fan, X. Optofluidic chlorophyll lasers. Lab Chip16, 2228–2235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Caixeiro, S., Gaio, M., Marelli, B., Omenetto, F. G. & Sapienza, R. Silk‐based biocompatible random lasing. Adv. Opt. Mater.4, 998–1003 (2016).

    Article  CAS  Google Scholar 

  43. Chen, Y.-C., Chen, Q. & Fan, X. Lasing in blood. Optica3, 809–815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aas, M., Chen, Q., Jonáš, A., Kiraz, A. & Fan, X. Optofluidic FRET lasers and their applications in novel photonic devices and biochemical sensing. IEEE J. Sel. Top. Quantum Electron.22, 1–15 (2016).

    Article  CAS  Google Scholar 

  45. Chen, Y.-C., Chen, Q., Zhang, T., Wang, W. & Fan, X. Versatile tissue lasers based on high-Q Fabry–Pérot microcavities. Lab Chip17, 538–548 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nizamoglu, S. et al. A simple approach to biological single-cell lasers via intracellular dyes. Adv. Opt. Mater.3, 1197–1200 (2015).

    Article  CAS  Google Scholar 

  47. Cho, S., Humar, M., Martino, N. & Yun, S. H. Laser particle stimulated emission microscopy. Phys. Rev. Lett.117, 193902 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen, Q. et al. Highly sensitive fluorescent protein FRET detection using optofluidic lasers. Lab Chip13, 2679–2681 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Beljanski, M. The Regulation of DNA Replication and Transcription (Demos Medical Publishing, New York, 2013).

  50. Lane, A. N. & Fan, T. W.-M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res.43, 2466–2485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bandres, M. A. & Gutiérrez-Vega, J. C. Ince–Gaussian beams. Opt. Lett.29, 144–146 (2004).

    Article  PubMed  Google Scholar 

  52. Schwarz, U. T., Bandres, M. A. & Gutiérrez-Vega, J. C. Observation of Ince–Gaussian modes in stable resonators. Opt. Lett.29, 1870–1872 (2004).

    Article  PubMed  Google Scholar 

  53. Pliss, A., Kuzmin, A. N., Kachynski, A. V. & Prasad, P. N. Nonlinear optical imaging and Raman microspectrometry of the cell nucleus throughout the cell cycle. Biophys. J.99, 3483–3491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grilley-Olson, J. E. et al. Validation of interobserver agreement in lung cancer assessment: hematoxylin-eosin diagnostic reproducibility for non-small cell lung cancer: the 2004 World Health Organization classification and therapeutically relevant subsets. Arch. Pathol. Lab. Med.137, 32–40 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bremnes, R. M. et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J. Thorac. Oncol.6, 209–217 (2011).

    Article  PubMed  Google Scholar 

  56. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med.14, 518–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet.47, 320–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, W. et al. Optofluidic laser array based on stable high-Q Fabry-Perot microcavities. Lab Chip15, 3862–3869 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Science Foundation (ECCS-1607250), the National Institutes of Health (NIBIB-1R21EB016783) and the National Natural Science Foundation of China (grant no. 61471254). We thank the support of the Molecular Imaging Analysis Lab at the University of Michigan for cryostats and confocal microscopy. We also thank W.-H. Weng from Harvard Medical School for pathology assistance.

Author information

Authors and Affiliations

Authors

Contributions

Y.-C.C. and X.F. conceived the research; Y.-C.C., X.T. and X.F. designed the experiments; Y.-C.C. and Q.C. performed the experiments; Q.S. developed the coding for the 2D scanning system; W.W. and X.F. designed, fabricated and characterized the optical mirrors and cavities. Y.-C.C. and X.F. analysed data and wrote the paper.

Corresponding author

Correspondence to Xudong Fan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary figures.

Life Sciences Reporting Summary

Supplementary Video 1

Lasing emissions from nuclear biomarkers in the nucleus of a lung-cancer cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Tan, X., Sun, Q. et al. Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis. Nat Biomed Eng 1, 724–735 (2017). https://doi.org/10.1038/s41551-017-0128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0128-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer