Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mucosal immunity to pathogenic intestinal bacteria

Key Points

  • Pathogens have to overcome colonization resistance by the microbiota to colonize the gut and to cause disease.

  • The microbiota modulates the immune system to limit pathogen colonization but also inadvertently helps certain pathogens to colonize, for example, by making electron acceptors and carbon sources available.

  • Pathogens are quickly sensed by innate pattern-recognition receptors (for example, Toll-like receptors (TLRs) and NOD-like receptors (NLRs)) on various cell types, which results in a pro-inflammatory response, for example, activation of the inflammasome.

  • Activation of innate receptors triggers an inflammatory response (for example, the interleukin-23–T helper 17 cell axis) that for some pathogens initially promotes colonization but ultimately results in clearance of pathogens.

  • Recruitment of high numbers of neutrophils to the site of infection is a hallmark of inflammatory diarrhoea and is generally beneficial to the host as it controls pathogens.

  • Secretory IgA antibodies are important to maintain the mucosal barrier and to protect against pathogens, for example, Vibrio cholerae or Salmonella spp.

Abstract

The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogens exploit the microbiota to colonize the gut.
Figure 2: Commensal microorganisms modulate intestinal immunity.
Figure 3: Activation of NLRs in the gut.
Figure 4: Antimicrobial responses induced by IL-22.
Figure 5: General overview of mucosal immunity to intestinal pathogens and commensal microorganisms.

Similar content being viewed by others

References

  1. Helander, H. F. & Fandriks, L. Surface area of the digestive tract - revisited. Scand. J. Gastroenterol. 49, 681–689 (2014).

    PubMed  Google Scholar 

  2. Hasleton, P. S. The internal surface area of the adult human lung. J. Anat. 112, 391–400 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Donnenberg, M. S. & Narayanan, S. How to diagnose a foodborne illness. Infect. Dis. Clin. North Am. 27, 535–554 (2013).

    PubMed  Google Scholar 

  4. Navaneethan, U. & Giannella, R. A. Mechanisms of infectious diarrhea. Nat. Clin. Pract. Gastroenterol. Hepatol. 5, 637–647 (2008).

    PubMed  Google Scholar 

  5. Maki, D. G. & Agger, W. A. Enterococcal bacteremia: clinical features, the risk of endocarditis, and management. Med. (Baltimore) 67, 248–269 (1988).

    CAS  Google Scholar 

  6. Kelly, C. P., Pothoulakis, C. & LaMont, J. T. Clostridium difficile colitis. N. Engl. J. Med. 330, 257–262 (1994).

    CAS  PubMed  Google Scholar 

  7. Sassone-Corsi, M. & Raffatellu, M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J. Immunol. 194, 4081–4087 (2015).

    CAS  PubMed  Google Scholar 

  8. Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bohnhoff, M., Drake, B. L. & Miller, C. P. The effect of an antibiotic on the susceptibility of the mouse's intestinal tract to Salmonella infection. Antibiot. Annu. 3, 453–455 (1955).

    PubMed  Google Scholar 

  10. Kamada, N., Chen, G. Y., Inohara, N. & Nunez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010). This study is the first report of the immune response and the microbiota enhancing the growth of a pathogen; namely, by providing Salmonella spp. with a novel electron acceptor in the inflamed gut.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lamichhane-Khadka, R., Benoit, S. L., Maier, S. E. & Maier, R. J. A link between gut community metabolism and pathogenesis: molecular hydrogen-stimulated glucarate catabolism aids Salmonella virulence. Open Biol. 3, 130146 (2013).

    PubMed  PubMed Central  Google Scholar 

  13. Maier, R. J., Olczak, A., Maier, S., Soni, S. & Gunn, J. Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence. Infect. Immun. 72, 6294–6299 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Maier, L. et al. Microbiota-derived hydrogen fuels Salmonella Typhimurium invasion of the gut ecosystem. Cell Host Microbe 14, 641–651 (2013).

    CAS  PubMed  Google Scholar 

  15. Marcobal, A. et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10, 507–514 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013). This study shows that disruption of the resident microbiota can alter carbohydrate availability and favour pathogen growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pacheco, A. R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492, 113–117 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Curtis, M. M. et al. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe 16, 759–769 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pickard, J. M. et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638–641 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Round, J. L. & Mazmanian, S. K. Inducible FOXP3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPARγ and RELA. Nature Immunol. 5, 104–112 (2004).

    CAS  Google Scholar 

  22. Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L. & Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl Acad. Sci. USA 105, 20858–20863 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005). The authors report a myeloid-derived mucosal dendritic cell present in the lamina propria that directly samples luminal antigens.

    CAS  PubMed  Google Scholar 

  24. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004). This report shows that dendritic cells carry small numbers of live commensal bacteria, allowing for the selective induction of IgA that protects against commensal microorganism penetration of the mucosal barrier.

    CAS  PubMed  Google Scholar 

  25. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007).

    CAS  PubMed  Google Scholar 

  26. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    CAS  PubMed  Google Scholar 

  27. Endt, K. et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 6, e1001097 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38, 581–595 (2010).

    Google Scholar 

  29. Ivanov, I. I. et al. Induction of intestinal TH17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). This study shows that a specific commensal organism, segmented filamentous bacteria (SFB), is sufficient to induce the development of T H 17 cells in the lamina propria.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Goto, Y. et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal TH17 cell differentiation. Immunity 40, 594–607 (2010).

    Google Scholar 

  31. Lecuyer, E. et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40, 608–620 (2014).

    CAS  PubMed  Google Scholar 

  32. Schnupf, P. et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 520, 99–103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ostaff, M. J., Stange, E. F. & Wehkamp, J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol. Med. 5, 1465–1483 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76–83 (2010). The authors show that the expression of human HD5 in mice modulates the composition of the microbiota, thus playing an important part in regulating commensal microorganism diversity.

    CAS  PubMed  Google Scholar 

  35. Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003).

    CAS  PubMed  Google Scholar 

  36. Chu, H. et al. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337, 477–481 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).

    CAS  PubMed  Google Scholar 

  38. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  Google Scholar 

  39. Gay, N. J., Symmons, M. F., Gangloff, M. & Bryant, C. E. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 14, 546–558 (2014).

    CAS  PubMed  Google Scholar 

  40. O'Neill, L. A., Golenbock, D. & Bowie, A. G. The history of Toll-like receptors — redefining innate immunity. Nat. Rev. Immunol. 13, 453–460 (2013).

    PubMed  Google Scholar 

  41. Sivick, K. E. et al. Toll-like receptor-deficient mice reveal how innate immune signaling influences Salmonella virulence strategies. Cell Host Microbe 15, 203–213 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Weiss, D. S., Raupach, B., Takeda, K., Akira, S. & Zychlinsky, A. Toll-like receptors are temporally involved in host defense. J. Immunol. 172, 4463–4469 (2004).

    CAS  PubMed  Google Scholar 

  43. Khan, M. A. et al. Toll-like receptor 4 contributes to colitis development but not to host defense during Citrobacter rodentium infection in mice. Infect. Immun. 74, 2522–2536 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lebeis, S. L., Bommarius, B., Parkos, C. A., Sherman, M. A. & Kalman, D. TLR signaling mediated by MYD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium. J. Immunol. 179, 566–577 (2007).

    CAS  PubMed  Google Scholar 

  45. Gibson, D. L. et al. MYD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Cell. Microbiol. 10, 618–631 (2008).

    CAS  PubMed  Google Scholar 

  46. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    CAS  PubMed  Google Scholar 

  47. Uematsu, S. et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7, 868–874 (2006).

    CAS  PubMed  Google Scholar 

  48. Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    CAS  PubMed  Google Scholar 

  49. Uematsu, S. & Akira, S. Immune responses of TLR5+ lamina propria dendritic cells in enterobacterial infection. J. Gastroenterol. 44, 803–811 (2009).

    CAS  PubMed  Google Scholar 

  50. Murthy, K. G., Deb, A., Goonesekera, S., Szabo, C. & Salzman, A. L. Identification of conserved domains in Salmonella muenchen flagellin that are essential for its ability to activate TLR5 and to induce an inflammatory response in vitro. J. Biol. Chem. 279, 5667–5675 (2004).

    CAS  PubMed  Google Scholar 

  51. Smith, K. D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247–1253 (2003).

    CAS  PubMed  Google Scholar 

  52. Andersen-Nissen, E. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl Acad. Sci. USA 102, 9247–9252 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gibson, D. L. et al. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell. Microbiol. 10, 388–403 (2008).

    CAS  PubMed  Google Scholar 

  54. Stahl, M. et al. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection. PLoS Pathog. 10, e1004264 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Nishimori, J. H. et al. Microbial amyloids induce interleukin 17A (IL-17A) and IL-22 responses via Toll-like receptor 2 activation in the intestinal mucosa. Infect. Immun. 80, 4398–4408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kanneganti, T. D., Lamkanfi, M. & Nunez, G. Intracellular NOD-like receptors in host defense and disease. Immunity 27, 549–559 (2007).

    CAS  PubMed  Google Scholar 

  57. Fink, S. L. & Cookson, B. T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8, 1812–1825 (2006).

    CAS  PubMed  Google Scholar 

  58. Lala, S. et al. Crohn's disease and the NOD2 gene: a role for Paneth cells. Gastroenterology 125, 47–57 (2003).

    CAS  PubMed  Google Scholar 

  59. Eckmann, L. Innate immunity and mucosal bacterial interactions in the intestine. Curr. Opin. Gastroenterol. 20, 82–88 (2004).

    CAS  PubMed  Google Scholar 

  60. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003).

    CAS  PubMed  Google Scholar 

  61. Girardin, S. E. et al. NOD1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003). References 60 and 61 report the recognition of peptidoglycan by NOD1.

    CAS  PubMed  Google Scholar 

  62. Girardin, S. E. et al. NOD2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    CAS  PubMed  Google Scholar 

  63. Inohara, N. et al. NOD1, an APAF1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem. 274, 14560–14567 (1999).

    CAS  PubMed  Google Scholar 

  64. Ogura, Y. et al. NOD2, a NOD1/APAF1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 276, 4812–4818 (2001).

    CAS  PubMed  Google Scholar 

  65. LeBlanc, P. M. et al. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 3, 146–157 (2008).

    CAS  PubMed  Google Scholar 

  66. Kim, Y. G. et al. The NOD2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34, 769–780 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Geddes, K. et al. Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat. Med. 17, 837–844 (2011). This study reports the existence of innate T H 17 cells and how their induction is dependent on NOD1 and NOD2 signalling.

    CAS  PubMed  Google Scholar 

  68. Kasper, C. A. et al. Cell-cell propagation of NF-κB transcription factor and MAP kinase activation amplifies innate immunity against bacterial infection. Immunity 33, 804–816 (2010).

    CAS  PubMed  Google Scholar 

  69. Geddes, K. et al. NOD1 and NOD2 regulation of inflammation in the Salmonella colitis model. Infect. Immun. 78, 5107–5115 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Keestra, A. M. et al. A Salmonella virulence factor activates the NOD1/NOD2 signaling pathway. MBio. 2 (2011).

  71. Keestra, A. M. et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496, 233–237 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Srikanth, C. V. et al. Salmonella pathogenesis and processing of secreted effectors by caspase-3. Science 330, 390–393 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, C. A. et al. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc. Natl Acad. Sci. USA 97, 12283–12288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Anand, P. K., Malireddi, R. K. & Kanneganti, T. D. Role of the NLRP3 inflammasome in microbial infection. Front. Microbiol. 2, 12 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via IPAF. Nat. Immunol. 7, 569–575 (2006).

    CAS  PubMed  Google Scholar 

  76. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006). References 75 and 76 report the discovery of flagellin as the ligand for NLRC4.

    CAS  PubMed  Google Scholar 

  77. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Franchi, L. et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13, 449–456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, Z. et al. Role of inflammasomes in host defense against Citrobacter rodentium infection. J. Biol. Chem. 287, 16955–16964 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lebeis, S. L., Powell, K. R., Merlin, D., Sherman, M. A. & Kalman, D. Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium. Infect. Immun. 77, 604–614 (2009).

    CAS  PubMed  Google Scholar 

  82. Knodler, L. A. et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249–256 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sellin, M. E. et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16, 237–248 (2014). References 82 and 83 report that activation of the inflammasome in epithelial cells has a crucial role in antimicrobial defence at the intestinal mucosal surface.

    CAS  PubMed  Google Scholar 

  84. Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156, 1045–1059 (2014). The authors show that the NLRP6 inflammasome is an important regulator of mucin granule exocytosis by goblet cells. Moreover, it links inflammasome signalling to autophagy and highlights the role of goblet cells in host–microbe mutualism.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Godinez, I., Keestra, A. M., Spees, A. & Baumler, A. J. The IL-23 axis in Salmonella gastroenteritis. Cell. Microbiol. 13, 1639–1647 (2011).

    CAS  PubMed  Google Scholar 

  86. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  PubMed  Google Scholar 

  87. Edwards, L. A. et al. Delineation of the innate and adaptive T cell immune outcome in the human host in response to Campylobacter jejuni infection. PLoS ONE 5, e15398 (2010).

    PubMed  PubMed Central  Google Scholar 

  88. Awasthi, A. et al. Cutting edge: IL-23 receptor GFP reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182, 5904–5908 (2009).

    CAS  PubMed  Google Scholar 

  89. Zhou, L. et al. IL-6 programs TH17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    CAS  PubMed  Google Scholar 

  90. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and TH17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  PubMed  Google Scholar 

  91. Kinnebrew, M. A. et al. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36, 276–287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Raffatellu, M. et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med. 14, 421–428 (2008). In this study, the authors show that SIV infection induces the depletion of T H 17 cells in the ileal mucosa of rhesus macaques, thereby eroding the mucosal barrier to Salmonella spp. dissemination.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    CAS  PubMed  Google Scholar 

  94. Malik, A., Sharma, D., St Charles, J., Dybas, L. A. & Mansfield, L. S. Contrasting immune responses mediate Campylobacter jejuni-induced colitis and autoimmunity. Mucosal Immunol. 7, 802–817 (2014).

    CAS  PubMed  Google Scholar 

  95. Kuchta, A. et al. Vibrio cholerae O1 infection induces proinflammatory CD4+ T-cell responses in blood and intestinal mucosa of infected humans. Clin. Vaccine Immunol. 18, 1371–1377 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Blaschitz, C. & Raffatellu, M. TH17 cytokines and the gut mucosal barrier. J. Clin. Immunol. 30, 196–203 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, K. et al. TH17 cells mediate clade-specific, serotype-independent mucosal immunity. Immunity 35, 997–1009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Monin, L. et al. Immune requirements for protective TH17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol. 8, 1099–1109 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sellge, G. et al. TH17 cells are the dominant T cell subtype primed by Shigella flexneri mediating protective immunity. J. Immunol. 184, 2076–2085 (2010).

    CAS  PubMed  Google Scholar 

  100. Becattini, S. et al. T cell immunity. Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines. Science 347, 400–406 (2015). In this paper, the authors find that human antigen-specific memory T cells have different frequencies but comparable diversity, showing that there is a degree of functional heterogeneity in the T cell response.

    CAS  PubMed  Google Scholar 

  101. Rutz, S., Eidenschenk, C. & Ouyang, W. IL-22, not simply a TH17 cytokine. Immunol. Rev. 252, 116–132 (2013).

    PubMed  Google Scholar 

  102. Behnsen, J. et al. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity 40, 262–273 (2014). In this paper, the authors report a unique role for IL-22 during infection: inducing the expression of antimicrobial proteins that suppress the intestinal microbiota and that favour the growth of a pathogen.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    CAS  PubMed  Google Scholar 

  104. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006). This study identifies the existance of REG3γ, a secreted C-type lectin with antimicrobial activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008). In this paper, the authors show that antibiotic treatment of mice downregulates intestinal expression of REG3γ, resulting in decreased killing of vancomycin-resistant Enterococcus spp.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Vaishnava, S. et al. The antibacterial lectin REGIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Fischbach, M. A. et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl Acad. Sci. USA 103, 16502–16507 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Raffatellu, M. et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5, 476–486 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Corbin, B. D. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962–965 (2008). This paper shows that the antimicrobial protein calprotectin functions by sequestering zinc and manganese.

    CAS  PubMed  Google Scholar 

  110. Liu, J. Z. et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11, 227–239 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ahlfors, H. et al. IL-22 fate reporter reveals origin and control of IL-22 production in homeostasis and infection. J. Immunol. 193, 4602–4613 (2014).

    CAS  PubMed  Google Scholar 

  112. Pham, T. A. et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16, 504–516 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    CAS  PubMed  Google Scholar 

  115. Spees, A. M. et al. Neutrophils are a source of γ interferon during acute Salmonella enterica serovar Typhimurium colitis. Infect. Immun. 82, 1692–1697 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Cua, D. J. & Tato, C. M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    CAS  PubMed  Google Scholar 

  117. Zindl, C. L. et al. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc. Natl Acad. Sci. USA 110, 12768–12773 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Taylor, P. R. et al. Activation of neutrophils by autocrine IL-17A–IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat. Immunol. 15, 143–151 (2014).

    CAS  PubMed  Google Scholar 

  119. Sturge, C. R. et al. TLR-independent neutrophil-derived IFNγ is important for host resistance to intracellular pathogens. Proc. Natl Acad. Sci. USA 110, 10711–10716 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Rydstrom, A. & Wick, M. J. Monocyte recruitment, activation, and function in the gut-associated lymphoid tissue during oral Salmonella infection. J. Immunol. 178, 5789–5801 (2007).

    PubMed  Google Scholar 

  121. Valdez, Y. et al. NRAMP1 drives an accelerated inflammatory response during Salmonella-induced colitis in mice. Cell. Microbiol. 11, 351–362 (2009).

    CAS  PubMed  Google Scholar 

  122. Zhang, S. et al. Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect. Immun. 71, 1–12 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Noriega, L. M., Van der Auwera, P., Daneau, D., Meunier, F. & Aoun, M. Salmonella infections in a cancer center. Support. Care Cancer 2, 116–122 (1994).

    CAS  PubMed  Google Scholar 

  124. Tumbarello, M., Tacconelli, E., Caponera, S., Cauda, R. & Ortona, L. The impact of bacteraemia on HIV infection. Nine years experience in a large Italian university hospital. J. Infect. 31, 123–131 (1995).

    CAS  PubMed  Google Scholar 

  125. Conlan, J. W. Neutrophils prevent extracellular colonization of the liver microvasculature by Salmonella Typhimurium. Infect. Immun. 64, 1043–1047 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Loetscher, Y. et al. Salmonella transiently reside in luminal neutrophils in the inflamed gut. PLoS ONE 7, e34812 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Perdomo, J. J., Gounon, P. & Sansonetti, P. J. Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayer by Shigella flexneri. J. Clin. Invest. 93, 633–643 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Perdomo, O. J. et al. Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J. Exp. Med. 180, 1307–1319 (1994).

    CAS  PubMed  Google Scholar 

  129. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  130. Zhang, Z., Jin, L., Champion, G., Seydel, K. B. & Stanley, S. L. Jr. Shigella infection in a SCID mouse-human intestinal xenograft model: role for neutrophils in containing bacterial dissemination in human intestine. Infect. Immun. 69, 3240–3247 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Spehlmann, M. E. et al. CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesion-forming bacterial pathogen. J. Immunol. 183, 3332–3343 (2009).

    CAS  PubMed  Google Scholar 

  132. Cerutti, A. & Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 28, 740–750 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Brandtzaeg, P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25, 5467–5484 (2007).

    CAS  PubMed  Google Scholar 

  134. Macpherson, A. J., McCoy, K. D., Johansen, F. E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    CAS  PubMed  Google Scholar 

  135. Bhuiyan, T. R. et al. Cholera caused by Vibrio cholerae O1 induces T-cell responses in the circulation. Infect. Immun. 77, 1888–1893 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Harris, A. M. et al. Antigen-specific memory B-cell responses to Vibrio cholerae O1 infection in Bangladesh. Infect. Immun. 77, 3850–3856 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wijburg, O. L. et al. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J. Exp. Med. 203, 21–26 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Cunningham, A. F. et al. Salmonella induces a switched antibody response without germinal centers that impedes the extracellular spread of infection. J. Immunol. 178, 6200–6207 (2007).

    CAS  PubMed  Google Scholar 

  139. MacLennan, C. A. et al. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. J. Clin. Invest. 118, 1553–1562 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lee, S. J. et al. Identification of a common immune signature in murine and human systemic Salmonellosis. Proc. Natl Acad. Sci. USA 109, 4998–5003 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Fritz, J. H. et al. Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature 481, 199–203 (2011). In this paper, the authors show that mouse IgA+ plasma cells produce inflammatory mediators including TNF and iNOS, revealing that plasma cells adapt to maintain homeostasis in the gut.

    PubMed  PubMed Central  Google Scholar 

  142. Maaser, C. et al. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect. Immun. 72, 3315–3324 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kantele, A. et al. Differences in immune responses induced by oral and rectal immunizations with Salmonella Typhi Ty21a: evidence for compartmentalization within the common mucosal immune system in humans. Infect. Immun. 66, 5630–5635 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Qadri, F. et al. Enteric infections in an endemic area induce a circulating antibody-secreting cell response with homing potentials to both mucosal and systemic tissues. J. Infect. Dis. 177, 1594–1599 (1998).

    CAS  PubMed  Google Scholar 

  145. Nachamkin, I. & Yang, X. H. Local immune responses to the Campylobacter flagellin in acute Campylobacter gastrointestinal infection. J. Clin. Microbiol. 30, 509–511 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. McArthur, M. A. et al. Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog. 11, e1004914 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Thiagarajah, J. R., Donowitz, M. & Verkman, A. S. Secretory diarrhoea: mechanisms and emerging therapies. Nat. Rev. Gastroenterol. Hepatol. 12, 446–457 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Gawenis, L. R. et al. cAMP inhibition of murine intestinal Na/H exchange requires CFTR-mediated cell shrinkage of villus epithelium. Gastroenterology 125, 1148–1163 (2003).

    CAS  PubMed  Google Scholar 

  149. Lin, R. et al. D-glucose acts via sodium/glucose cotransporter 1 to increase NHE3 in mouse jejunal brush border by a Na+/H+ exchange regulatory factor 2-dependent process. Gastroenterology 140, 560–571 (2011).

    CAS  PubMed  Google Scholar 

  150. Walker, N. M. et al. Role of down-regulated in adenoma anion exchanger in HCO3- secretion across murine duodenum. Gastroenterology 136, 893–901 (2009).

    CAS  PubMed  Google Scholar 

  151. Seidler, U. E. Gastrointestinal HCO3- transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways. Curr. Opin. Pharmacol. 13, 900–908 (2013).

    CAS  PubMed  Google Scholar 

  152. Mueckler, M. Facilitative glucose transporters. Eur. J. Biochem. 219, 713–725 (1994).

    CAS  PubMed  Google Scholar 

  153. Chen, M. et al. Loss of PDZ-adaptor protein NHERF2 affects membrane localization and cGMP- and [Ca2+]- but not cAMP-dependent regulation of Na+/H+ exchanger 3 in murine intestine. J. Physiol. 588, 5049–5063 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Yun, C. H. et al. cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc. Natl Acad. Sci. USA 94, 3010–3015 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Field, M., Fromm, D., al-Awqati, Q. & Greenough, W. B. 3rd. Effect of cholera enterotoxin on ion transport across isolated ileal mucosa. J. Clin. Invest. 51, 796–804 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Rao, M. C., Guandalini, S., Smith, P. L. & Field, M. Mode of action of heat-stable Escherichia coli enterotoxin. Tissue and subcellular specificities and role of cyclic GMP. Biochim. Biophys. Acta 632, 35–46 (1980).

    CAS  PubMed  Google Scholar 

  157. Madara, J. L. et al. 5′-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J. Clin. Invest. 91, 2320–2325 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ruhl, S. & Broz, P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur. J. Immunol. 45, 2927–2936 (2015).

    PubMed  Google Scholar 

  159. Hardt, W.D., Chen, L.M., Schuebel, K.E., Bustelo, X.R. & Galán, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the M.R. laboratory is supported by Public Health Service Grants AI083663, AI101784, AI105374, AI114625, and DK058057. M.R. holds an Investigator in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund. A.P.L. was funded by a UC MEXUS-CONACYT award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Raffatellu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Commensal microorganisms

Bacteria, fungi or viruses that inhabit the host without causing harm.

Pathobionts

Commensal organisms that, under certain circumstances, can cause disease.

Enteric pathogens

Pathogens that cause disease in the intestines.

Colonization resistance

The process by which commensal organisms protect against infection with exogenous microorganisms.

Siderophore

A low molecular weight, high-affinity iron-binding molecule that is secreted by bacteria and fungi to acquire iron from the surrounding environment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Lopez, A., Behnsen, J., Nuccio, SP. et al. Mucosal immunity to pathogenic intestinal bacteria. Nat Rev Immunol 16, 135–148 (2016). https://doi.org/10.1038/nri.2015.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2015.17

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing