Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Axial spondyloarthritis

Abstract

The term axial spondyloarthritis covers both non-radiographic disease and radiographic disease (also known as ankylosing spondylitis). Some studies have been performed to investigate the prevalence of axial spondyloarthritis, although most are limited to patients with radiographic disease. A strong genetic association has been shown between axial spondyloarthritis and human leukocyte antigen-B27 (HLA-B27), but the pathogenetic role of HLA-B27 has not yet been clarified. Tumour necrosis factor (TNF), IL-17, IL-23 and downstream pathways also seem to be important — based on the good results of therapies directed against these molecules — but their exact role in the inflammatory process is also not yet clear. Elucidating the interaction between osteoproliferation and inflammation will be crucial for the prevention of long-term structural damage of the bone. The development of new criteria for classification, diagnosis and screening of patients with axial spondyloarthritis will enable earlier intervention for this chronic inflammatory disease. MRI has become an important tool for the early detection of axial spondyloarthritis. NSAIDs and TNF blockers are effective therapies, including in the early non-radiographic stage. Therapeutic blockade of IL-17 or IL-23 seems to be a promising new treatment option. Tools for measuring quality of life in axial spondyloarthritis have become relevant to assess the impact that the disease has on patients. These diagnostic and therapeutic advances will continue to change the management of axial spondyloarthritis, and new insights into the disease pathogenesis will hopefully accelerate this process. For an illustrated summary of this Primer, visit: http://go.nature.com/51b1af

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of axial spondyloarthritis.
Figure 2: The pathophysiology of axial spondyloarthritis.
Figure 3: The role of human leukocyte antigen-B27 in axial spondyloarthritis.
Figure 4: Spectrum of axial spondyloarthritis.
Figure 5: Diagnostic approach.
Figure 6: Treatment algorithm for axial spondyloarthritis.
Figure 7: Quality of life.
Figure 8: ‘Bed-to-bench’ research in axial spondyloarthritis.

Similar content being viewed by others

References

  1. Moll, J. M., Haslock, I., Macrae, I. F. & Wright, V. Associations between ankylosing spondylitis, psoriatic arthritis, Reiter's disease, the intestinal arthropathies, and Behcet's syndrome. Medicine 53, 343–364 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Dougados, M. et al. The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum. 34, 1218–1227 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Amor, B., Dougados, M. & Mijiyawa, M. [Criteria of the classification of spondylarthropathies]. Rev. Rhum. Mal. Osteoartic. 57, 85–89 (in French) (1990).

    CAS  PubMed  Google Scholar 

  4. Rudwaleit, M. et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann. Rheum. Dis. 68, 777–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Rudwaleit, M. et al. The Assessment of SpondyloArthritis international Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 70, 25–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Sieper, J. & van der Heijde, D. Nonradiographic axial spondyloarthritis: new definition of an old disease? Arthritis Rheum. 65, 543–551 (2013).

    Article  PubMed  Google Scholar 

  7. Saraux, A. et al. Prevalence of spondyloarthropathies in France: 2001. Ann. Rheum. Dis. 64, 1431–1435 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guillemin, F. et al. Prevalence of rheumatoid arthritis in France: 2001. Ann. Rheum. Dis. 64, 1427–1430 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robinson, P. C. & Brown, M. A. Genetics of ankylosing spondylitis. Mol. Immunol. 57, 2–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Dean, L. E. et al. Global prevalence of ankylosing spondylitis. Rheumatology 53, 650–657 (2014).

    Article  PubMed  Google Scholar 

  11. van der Linden, S., Valkenburg, H. A. & Cats, A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 27, 361–368 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Stolwijk, C., Boonen, A., van Tubergen, A. & Reveille, J. D. Epidemiology of spondyloarthritis. Rheum. Dis. Clin. North Am. 38, 441–476 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reveille, J. D., Witter, J. P. & Weisman, M. H. Prevalence of axial spondylarthritis in the United States: estimates from a cross-sectional survey. Arthritis Care Res. 64, 905–910 (2012). This epidemiological study found a high prevalence of axial spondyloarthritis in the United States.

    Article  Google Scholar 

  14. Rudwaleit, M. et al. The early disease stage in axial spondylarthritis: results from the German Spondyloarthritis Inception Cohort. Arthritis Rheum. 60, 717–727 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Dougados, M. et al. The DESIR cohort: a 10-year follow-up of early inflammatory back pain in France: study design and baseline characteristics of the 708 recruited patients. Joint Bone Spine 78, 598–603 (2011).

    Article  PubMed  Google Scholar 

  16. Chung, H. Y., Machado, P., van der Heijde, D., D'Agostino, M.-A. & Dougados, M. HLA-B27 positive patients differ from HLA-B27 negative patients in clinical presentation and imaging: results from the DESIR cohort of patients with recent onset axial spondyloarthritis. Ann. Rheum. Dis. 70, 1930–1936 (2011).

    Article  PubMed  Google Scholar 

  17. Ciurea, A. et al. Age at symptom onset in ankylosing spondylitis: is there a gender difference? Ann. Rheum. Dis. 73, 1908–1910 (2014).

    Article  PubMed  Google Scholar 

  18. Ramiro, S. et al. Evolution of radiographic damage in ankylosing spondylitis: a 12 year prospective follow-up of the OASIS study. Ann. Rheum. Dis. 74, 52–59 (2015). This long-term follow-up study showed a correlation between persistent disease activity and radiographic progression for the first time.

    Article  PubMed  Google Scholar 

  19. Chung, H. Y., Machado, P., van der Heijde, D., D'Agostino, M.-A. & Dougados, M. Smokers in early axial spondyloarthritis have earlier disease onset, more disease activity, inflammation and damage, and poorer function and health-related quality of life: results from the DESIR cohort. Ann. Rheum. Dis. 71, 809–816 (2012).

    Article  PubMed  Google Scholar 

  20. Poddubnyy, D. et al. Cigarette smoking has a dose-dependent impact on progression of structural damage in the spine in patients with axial spondyloarthritis: results from the GErman SPondyloarthritis Inception Cohort (GESPIC). Ann. Rheum. Dis. 72, 1430–1432 (2013).

    Article  PubMed  Google Scholar 

  21. Videm, V., Cortes, A., Thomas, R. & Brown, M. A. Current smoking is associated with incident ankylosing spondylitis — the HUNT population-based Norwegian health study. J. Rheumatol. 41, 2041–2048 (2014). This study suggests that smoking might not only be associated with a more-severe disease and/or a more-progressive disease but also with a higher incidence of the disease.

    Article  PubMed  Google Scholar 

  22. Robinson, P. C. & Brown, M. A. The genetics of ankylosing spondylitis and axial spondyloarthritis. Rheum. Dis. Clin. North Am. 38, 539–553 (2012).

    Article  PubMed  Google Scholar 

  23. Mijiyawa, M., Oniankitan, O. & Khan, M. A. Spondyloarthropathies in sub-Saharan Africa. Curr. Opin. Rheumatol. 12, 281–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Asquith, M., Elewaut, D., Lin, P. & Rosenbaum, J. T. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 28, 687–702 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Claudepierre, P. et al. Predictive factors of severity of spondyloarthropathy in North Africa. Br. J. Rheumatol. 34, 1139–1145 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. McGonagle, D. & McDermott, M. F. A proposed classification of the immunological diseases. PLoS Med. 3, e297 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. International Genetics of Ankylosing Spondylitis Consortium (IGAS). Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013). This paper provides a state-of-the-art overview of the genetic risk factors for ankylosing spondylitis, thereby identifying cellular and molecular pathways that might be involved in the pathogenesis of the disease.

    Article  CAS  Google Scholar 

  28. Song, I.-H. et al. Different response to rituximab in tumor necrosis factor blocker-naive patients with active ankylosing spondylitis and in patients in whom tumor necrosis factor blockers have failed: a twenty-four-week clinical trial. Arthritis Rheum. 62, 1290–1297 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Song, I.-H. et al. Treatment of active ankylosing spondylitis with abatacept: an open-label, 24-week pilot study. Ann. Rheum. Dis. 70, 1108–1110 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Baraliakos, X., Baerlecken, N., Witte, T., Heldmann, F. & Braun, J. High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann. Rheum. Dis. 73, 1079–1082 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Baerlecken, N. T. et al. Autoantibodies against CD74 in spondyloarthritis. Ann. Rheum. Dis. 73, 1211–1214 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Park, H., Bourla, A. B., Kastner, D. L., Colbert, R. A. & Siegel, R. M. Lighting the fires within: the cell biology of autoinflammatory diseases. Nat. Rev. Immunol. 12, 570–580 (2012). This paper reviews how HLA-B27 could contribute to the pathogenesis of axial spondyloarthritis in an antigen-independent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Ambarus, C., Yeremenko, N., Tak, P. P. & Baeten, D. Pathogenesis of spondyloarthritis: autoimmune or autoinflammatory? Curr. Opin. Rheumatol. 24, 351–358 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Dougados, M. & Baeten, D. Spondyloarthritis. Lancet 377, 2127–2137 (2011).

    Article  PubMed  Google Scholar 

  36. Jacques, P., Elewaut, D. & Mielants, H. Interactions between gut inflammation and arthritis/spondylitis. Curr. Opin. Rheumatol. 22, 368–374 (2010).

    Article  PubMed  Google Scholar 

  37. Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).

    Article  PubMed  Google Scholar 

  38. McGonagle, D., Gibbon, W. & Emery, P. Classification of inflammatory arthritis by enthesitis. Lancet 352, 1137–1140 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. McGonagle, D. et al. Characteristic magnetic resonance imaging entheseal changes of knee synovitis in spondylarthropathy. Arthritis Rheum. 41, 694–700 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Paramarta, J. E. et al. Peripheral joint inflammation in early onset spondyloarthritis is not specifically related to enthesitis. Ann. Rheum. Dis. 73, 735–740 (2014).

    Article  PubMed  Google Scholar 

  41. Lories, R. J., Matthys, P., de Vlam, K., Derese, I. & Luyten, F. P. Ankylosing enthesitis, dactylitis, and onychoperiostitis in male DBA/1 mice: a model of psoriatic arthritis. Ann. Rheum. Dis. 63, 595–598 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McGonagle, D. et al. Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann. Rheum. Dis. 61, 534–537 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baeten, D. et al. Association of CD163+ macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylarthropathy synovitis. Arthritis Rheum. 50, 1611–1623 (2004).

    Article  PubMed  Google Scholar 

  44. Baeten, D. et al. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res. Ther. 7, R359–R369 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. van Duivenvoorde, L. M. et al. Innate immune stimulation triggers early-onset spondyloarthritis in HLA-B27/human Beta2 microglobulin transgenic rats. Arthritis Rheum. Abstr. 63, 990 (2011).

    Google Scholar 

  46. Ruutu, M. et al. β-glucan triggers spondylarthritis and Crohn's disease-like ileitis in SKG mice. Arthritis Rheum. 64, 2211–2222 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Khan, M. A. HLA-B27 and its subtypes in world populations. Curr. Opin. Rheumatol. 7, 263–269 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Khan, M. A. Polymorphism of HLA-B27: 105 subtypes currently known. Curr. Rheumatol. Rep. 15, 362 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Hammer, R. E., Maika, S. D., Richardson, J. A., Tang, J. P. & Taurog, J. D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 63, 1099–1112 (1990). This seminal paper proves the functional involvement of HLA-B27 in the pathogenesis of axial spondyloarthritis and describes the key animal model for the study of disease pathophysiology.

    Article  CAS  PubMed  Google Scholar 

  50. Hermann, E., Yu, D. T., Meyer zum Bü schenfelde, K. H. & Fleischer, B. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 342, 646–650 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Atagunduz, P. et al. HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum. 52, 892–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Taurog, J. D. et al. Spondylarthritis in HLA-B27/human β2-microglobulin-transgenic rats is not prevented by lack of CD8. Arthritis Rheum. 60, 1977–1984 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Mear, J. P. et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J. Immunol. 163, 6665–6670 (1999).

    CAS  PubMed  Google Scholar 

  55. DeLay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goodall, J. C. et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc. Natl Acad. Sci. USA 107, 17698–17703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Turner, M. J. et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J. Immunol. 175, 2438–2448 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Neerinckx, B., Carter, S. & Lories, R. J. No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann. Rheum. Dis. 73, 629–630 (2014).

    Article  PubMed  Google Scholar 

  59. Kollnberger, S. et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum. 46, 2972–2982 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Chan, A. T., Kollnberger, S. D., Wedderburn, L. R. & Bowness, P. Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum. 52, 3586–3595 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Bowness, P. et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J. Immunol. 186, 2672–2680 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, H.-J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin, P. et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS ONE 9, e105684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sahlberg, A. S., Granfors, K. & Penttinen, M. A. HLA-B27 and host–pathogen interaction. Adv. Exp. Med. Biol. 649, 235–244 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Zeidler, H. & Hudson, A. P. New insights into Chlamydia and arthritis. Promise of a cure?. Ann. Rheum. Dis. 73, 637–644 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Tran, T. M. et al. Additional human β2-microglobulin curbs HLA-B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA-B27-transgenic rats. Arthritis Rheum. 54, 1317–1327 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Coffre, M. et al. Combinatorial control of Th17 and Th1 cell functions by genetic variations in genes associated with the interleukin-23 signaling pathway in spondyloarthritis. Arthritis Rheum. 65, 1510–1521 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Jandus, C. et al. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum. 58, 2307–2317 (2008).

    Article  PubMed  Google Scholar 

  69. Kenna, T. J. et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 64, 1420–1429 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Appel, H. et al. Analysis of IL-17+ cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res. Ther. 13, R95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Noordenbos, T. et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 64, 99–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4,CD8, entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Adamopoulos, I. E. et al. IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J. Immunol. 187, 951–959 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Benham, H. et al. Interleukin-23 mediates the intestinal response to microbial β-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 66, 1755–1767 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Braun, J. et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum. 38, 499–505 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Armaka, M. et al. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205, 331–337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wanders, A. et al. Nonsteroidal antiinflammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: a randomized clinical trial. Arthritis Rheum. 52, 1756–1765 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Vandooren, B. et al. Mediators of structural remodeling in peripheral spondylarthritis. Arthritis Rheum. 60, 3534–3545 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Herman, S., Krönke, G. & Schett, G. Molecular mechanisms of inflammatory bone damage: emerging targets for therapy. Trends Mol. Med. 14, 245–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. François, R. J., Gardner, D. L., Degrave, E. J. & Bywaters, E. G. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis. Arthritis Rheum. 43, 2011–2024 (2000).

    Article  PubMed  Google Scholar 

  82. van Duivenvoorde, L. M. et al. Relationship between inflammation, bone destruction, and osteoproliferation in the HLA-B27/human β2-microglobulin-transgenic rat model of spondylarthritis. Arthritis Rheum. 64, 3210–3219 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Daoussis, D. et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum. 62, 150–158 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Heiland, G. R. et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann. Rheum. Dis. 71, 572–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Appel, H. et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 60, 3257–3262 (2009).

    Article  PubMed  Google Scholar 

  87. Lories, R. J., Derese, I. & Luyten, F. P. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J. Clin. Invest. 115, 1571–1579 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. van der Heijde, D. et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum. 58, 3063–3070 (2008).

    Article  PubMed  Google Scholar 

  89. Baraliakos, X., Haibel, H., Listing, J., Sieper, J. & Braun, J. Continuous long-term anti-TNF therapy does not lead to an increase in the rate of new bone formation over 8 years in patients with ankylosing spondylitis. Ann. Rheum. Dis. 73, 710–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Haroon, N. et al. The impact of tumor necrosis factor α inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 65, 2645–2654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sieper, J., Appel, H., Braun, J. & Rudwaleit, M. Critical appraisal of assessment of structural damage in ankylosing spondylitis: implications for treatment outcomes. Arthritis Rheum. 58, 649–656 (2008).

    Article  PubMed  Google Scholar 

  92. Lories, R. J., Derese, I. & Luyten, F. P. Inhibition of osteoclasts does not prevent joint ankylosis in a mouse model of spondyloarthritis. Rheumatology 47, 605–608 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Lories, R. J., Luyten, F. P. & de Vlam, K. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res. Ther. 11, 221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yeremenko, N. et al. Disease-specific and inflammation-independent stromal alterations in spondylarthritis synovitis. Arthritis Rheum. 65, 174–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. van Duivenvoorde, L. M., van Tok, M. N. & Baeten, D. L. Membrane-bound TNF drives axial and peripheral inflammation and pathologic new bone formation. Arthritis Rheum. Abstr. 65 (Suppl. 10), 536 (2009).

    Google Scholar 

  96. Sieper, J., Braun, J., Rudwaleit, M., Boonen, A. & Zink, A. Ankylosing spondylitis: an overview. Ann. Rheum. Dis. 61, iii8–iii18 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rudwaleit, M., Khan, M. A. & Sieper, J. The challenge of diagnosis and classification in early ankylosing spondylitis: do we need new criteria? Arthritis Rheum. 52, 1000–1008 (2005).

    Article  PubMed  Google Scholar 

  98. Braun, J., Baraliakos, X., Kiltz, U., Heldmann, F. & Sieper, J. Classification and diagnosis of axial spondyloarthritis — what is the clinically relevant difference? J. Rheumatol. 42, 31–38 (2015). This paper explains the clinically relevant differences between classification and diagnosis of patients with axial spondyloarthritis in a practical way.

    Article  PubMed  Google Scholar 

  99. van den Berg, R. et al. ASAS modification of the Berlin algorithm for diagnosing axial spondyloarthritis: results from the SPondyloArthritis Caught Early (SPACE)-cohort and from the Assessment of SpondyloArthritis international Society (ASAS)-cohort. Ann. Rheum. Dis. 72, 1646–1653 (2013). This is a proposal for a diagnostic algorithm for axial spondyloarthritis that can be applied in daily clinical practice.

    Article  PubMed  Google Scholar 

  100. Rudwaleit, M. et al. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group. Ann. Rheum. Dis. 68, 1520–1527 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Sieper, J. et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann. Rheum. Dis. 68, ii1–ii44 (2009).

    PubMed  Google Scholar 

  102. Weber, U. et al. Assessment of structural lesions in sacroiliac joints enhances diagnostic utility of magnetic resonance imaging in early spondylarthritis. Arthritis Care Res. 62, 1763–1771 (2010).

    Article  Google Scholar 

  103. van den Berg, R. et al. Agreement between clinical practice and trained central reading in reading of sacroiliac joints on plain pelvic radiographs. Results from the DESIR cohort. Arthritis Rheumatol. 66, 2403–2411 (2014).

    Article  PubMed  Google Scholar 

  104. Mandl, P. et al. EULAR recommendations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice. Ann. Rheum. Dis. 74, 1327–1339 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Sieper, J. & Rudwaleit, M. Early referral recommendations for ankylosing spondylitis (including pre-radiographic and radiographic forms) in primary care. Ann. Rheum. Dis. 64, 659–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Hermann, J., Giessauf, H., Schaffler, G., Ofner, P. & Graninger, W. Early spondyloarthritis: usefulness of clinical screening. Rheumatology 48, 812–816 (2009).

    Article  PubMed  Google Scholar 

  107. Sieper, J. et al. Comparison of two referral strategies for diagnosis of axial spondyloarthritis: the Recognising and Diagnosing Ankylosing Spondylitis Reliably (RADAR) study. Ann. Rheum. Dis. 72, 1621–1627 (2013).

    Article  PubMed  Google Scholar 

  108. Braun, A. et al. Optimizing the identification of patients with axial spondyloarthritis in primary care—the case for a two-step strategy combining the most relevant clinical items with HLA B27. Rheumatology 52, 1418–1424 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Rudwaleit, M. & Sieper, J. Referral strategies for early diagnosis of axial spondyloarthritis. Nat. Rev. Rheumatol. 8, 262–268 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Deodhar, A. et al. Prevalence of axial spondyloarthritis among undiagnosed chronic back pain patients in the United States. Ann. Rheum. Dis. 73, 198–199 (2014).

    Article  Google Scholar 

  111. Poddubnyy, D., Rudwaleit, M., Haibel, H. & Landewé, R. xs Assessment of Spondyloarthritis international Society endorsed recommendations for early referral of patients suspected for axial spondyloarthritis. Arthritis Rheumatol. 66, 1133–1134 (2014).

    Article  CAS  Google Scholar 

  112. Sieper, J. et al. New criteria for inflammatory back pain in patients with chronic back pain: a real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS). Ann. Rheum. Dis. 68, 784–788 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Baraliakos, X. et al. Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann. Rheum. Dis. 66, 910–915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Heuft-Dorenbosch, L. et al. Combining information obtained from magnetic resonance imaging and conventional radiographs to detect sacroiliitis in patients with recent onset inflammatory back pain. Ann. Rheum. Dis. 65, 804–808 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Poddubnyy, D. et al. Rates and predictors of radiographic sacroiliitis progression over 2 years in patients with axial spondyloarthritis. Ann. Rheum. Dis. 70, 1369–1374 (2011).

    Article  PubMed  Google Scholar 

  116. Braun, J. et al. Treatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. Lancet 359, 1187–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Gran, J. T. & Skomsvoll, J. F. The outcome of ankylosing spondylitis: a study of 100 patients. Br. J. Rheumatol. 36, 766–771 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. van der Heijde, D. et al. Evaluation of the efficacy of etoricoxib in ankylosing spondylitis: results of a fifty-two-week, randomized, controlled study. Arthritis Rheum. 52, 1205–1215 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Amor, B. et al. Are classification criteria for spondylarthropathy useful as diagnostic criteria? Rev. Rhum. Engl. Ed. 62, 10–15 (1995).

    CAS  PubMed  Google Scholar 

  120. Amor, B. [Response to treatment as an aid to diagnosis]. Rev. Rhum. Mal. Osteoartic. 59, 3S–6S (in French) (1992).

    CAS  PubMed  Google Scholar 

  121. Dougados, M. et al. ASAS recommendations for collecting, analysing and reporting NSAID intake in clinical trials/epidemiological studies in axial spondyloarthritis. Ann. Rheum. Dis. 70, 249–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Inman, R. D. et al. Efficacy and safety of golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, Phase III trial. Arthritis Rheum. 58, 3402–3412 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Sieper, J. et al. Efficacy and safety of infliximab plus naproxen versus naproxen alone in patients with early, active axial spondyloarthritis: results from the double-blind, placebo-controlled INFAST study, part 1. Ann. Rheum. Dis. 73, 101–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Smolen, J. S., van der Heijde, D., Machold, K. P., Aletaha, D. & Landewé, R. Proposal for a new nomenclature of disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 73, 3–5 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. van der Horst-Bruinsma, I. E., Clegg, D. O. & Dijkmans, B. A. Treatment of ankylosing spondylitis with disease modifying antirheumatic drugs. Clin. Exp. Rheumatol. 20, S67–S70 (2002).

    CAS  PubMed  Google Scholar 

  126. Nissilä, M. et al. Sulfasalazine in the treatment of ankylosing spondylitis. A twenty-six-week, placebo-controlled clinical trial. Arthritis Rheum. 31, 1111–1116 (1988).

    Article  PubMed  Google Scholar 

  127. Braun, J. et al. Efficacy of sulfasalazine in patients with inflammatory back pain due to undifferentiated spondyloarthritis and early ankylosing spondylitis: a multicentre randomised controlled trial. Ann. Rheum. Dis. 65, 1147–1153 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Breban, M. et al. Maintenance of infliximab treatment in ankylosing spondylitis: results of a one-year randomized controlled trial comparing systematic versus on-demand treatment. Arthritis Rheum. 58, 88–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Haibel, H. et al. Efficacy of oral prednisolone in active ankylosing spondylitis: results of a double-blind, randomised, placebo-controlled short-term trial. Ann. Rheum. Dis. 73, 243–246 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. van der Heijde, D. et al. 2010 update of the international ASAS recommendations for the use of anti-TNF agents in patients with axial spondyloarthritis. Ann. Rheum. Dis. 70, 905–908 (2011).

    Article  PubMed  Google Scholar 

  131. Gorman, J. D., Sack, K. E. & Davis, J. C. Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor α. N. Engl. J. Med. 346, 1349–1356 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Sieper, J. et al. Efficacy and safety of adalimumab in patients with non-radiographic axial spondyloarthritis: results of a randomised placebo-controlled trial (ABILITY-1). Ann. Rheum. Dis. 72, 815–822 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Landewé, R. et al. Efficacy of certolizumab pegol on signs and symptoms of axial spondyloarthritis including ankylosing spondylitis: 24-week results of a double-blind randomised placebo-controlled Phase 3 study. Ann. Rheum. Dis. 73, 39–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Braun, J. et al. Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis, before and after successful therapy with infliximab: evaluation of a new scoring system. Arthritis Rheum. 48, 1126–1136 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Braun, J. et al. Persistent clinical response to the anti-TNF-α antibody infliximab in patients with ankylosing spondylitis over 3 years. Rheumatology 44, 670–676 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. van der Heijde, D. et al. Adalimumab effectiveness for the treatment of ankylosing spondylitis is maintained for up to 2 years: long-term results from the ATLAS trial. Ann. Rheum. Dis. 68, 922–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Rudwaleit, M., Listing, J., Brandt, J., Braun, J. & Sieper, J. Prediction of a major clinical response (BASDAI 50) to tumour necrosis factor α blockers in ankylosing spondylitis. Ann. Rheum. Dis. 63, 665–670 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vastesaeger, N. et al. Predicting the outcome of ankylosing spondylitis therapy. Ann. Rheum. Dis. 70, 973–981 (2011).

    Article  PubMed  Google Scholar 

  139. Carmona, L. et al. Safety and retention rate of off-label uses of TNF antagonists in rheumatic conditions: data from the Spanish registry BIOBADASER 2. 0. Rheumatology 50, 85–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Baraliakos, X. et al. Clinical response to discontinuation of anti-TNF therapy in patients with ankylosing spondylitis after 3 years of continuous treatment with infliximab. Arthritis Res. Ther. 7, R439–R444 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Haibel, H. et al. Long-term efficacy of adalimumab after drug withdrawal and retreatment in patients with active non-radiographically evident axial spondyloarthritis who experience a flare. Arthritis Rheum. 65, 2211–2213 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Arends, S. et al. Patient-tailored dose reduction of TNF-α blocking agents in ankylosing spondylitis patients with stable low disease activity in daily clinical practice. Clin. Exp. Rheumatol. 33,174–180 (2015).

    PubMed  Google Scholar 

  143. Braun, J. et al. 2010 update of the ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann. Rheum. Dis. 70, 896–904 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Dougados, M. et al. Nonsteroidal antiinflammatory drug intake according to the Assessment of SpondyloArthritis international Society score in clinical trials evaluating tumor necrosis factor blockers: example of etanercept in advanced ankylosing spondylitis. Arthritis Care Res. 64, 290–294 (2012).

    Article  CAS  Google Scholar 

  145. Haibel, H., Rudwaleit, M., Listing, J. & Sieper, J. Open label trial of anakinra in active ankylosing spondylitis over 24 weeks. Ann. Rheum. Dis. 64, 296–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Sieper, J. et al. Sarilumab for the treatment of ankylosing spondylitis: results of a Phase II, randomised, double-blind, placebo-controlled study (ALIGN). Ann. Rheum. Dis. 74, 1051–1057 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Sieper, J., Porter-Brown, B., Thompson, L., Harari, O. & Dougados, M. Assessment of short-term symptomatic efficacy of tocilizumab in ankylosing spondylitis: results of randomised, placebo-controlled trials. Ann. Rheum. Dis. 73, 95–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Song, I.-H. et al. Major clinical response of rituximab in active TNF-blocker-naive patients with ankylosing spondylitis but not in TNF-blocker-failure patients — an open label clinical trial. Arthritis Rheum. Abstr. 60 (Suppl.10), 1769 (2009).

    Google Scholar 

  149. Baeten, D. et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet 382, 1705–1713 (2013). This trial provides the first evidence that strategies targeting IL-17 work in ankylosing spondylitis.

    Article  CAS  PubMed  Google Scholar 

  150. Poddubnyy, D., Hermann, K.-G., Callhoff, J., Listing, J. & Sieper, J. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann. Rheum. Dis. 73, 817–823 (2014). This trial provides the first evidence that strategies targeting IL-23 work in ankylosing spondylitis.

    Article  CAS  PubMed  Google Scholar 

  151. Baeten, D. L. et al. Secukinumab, a monoclonal antibody to interleukin-17A, significantly improves signs and symptoms of active ankylosing spondylitis: results of a 52-week Phase 3 randomized placebo-controlled trial with intravenous loading and subcutaneous maintenance dosing. Am. Coll. Rheumatol. Abstr.[online] (2014).

  152. Sieper, J. et al. Secukinumab, a monoclonal antibody to interleukin-17A, significantly improves signs and symptoms of active ankylosing spondylitis: results of a Phase 3, randomized, placebo-controlled trial with subcutaneous loading and maintenance dosing. Am. Coll. Rheumatol. Abstr.[online] (2014).

  153. Sandborn, W. J. et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology 135, 1130–1141 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Dagfinrud, H., Kvien, T. K. & Hagen, K. B. Physiotherapy interventions for ankylosing spondylitis. Cochrane Database Syst. Rev. 23, CD002822 (2008).

    Google Scholar 

  156. Lukas, C. et al. Development of an ASAS-endorsed disease activity score (ASDAS) in patients with ankylosing spondylitis. Ann. Rheum. Dis. 68, 18–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Smolen, J. S. et al. Treating spondyloarthritis, including ankylosing spondylitis and psoriatic arthritis, to target: recommendations of an international task force. Ann. Rheum. Dis. 73, 6–16 (2014).

    Article  PubMed  Google Scholar 

  158. Gill, T. M. & Feinstein, A. R. A critical appraisal of the quality of quality-of-life measurements. JAMA 272, 619–626 (1994).

    Article  CAS  PubMed  Google Scholar 

  159. Guyatt, G. H., Feeny, D. H. & Patrick, D. L. Measuring health-related quality of life. Ann. Intern. Med. 118, 622–629 (1993).

    Article  CAS  PubMed  Google Scholar 

  160. Chorus, A. M., Miedema, H. S., Boonen, A. & Van Der Linden, S. Quality of life and work in patients with rheumatoid arthritis and ankylosing spondylitis of working age. Ann. Rheum. Dis. 62, 1178–1184 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kotsis, K., Voulgari, P. V., Drosos, A. A., Carvalho, A. F. & Hyphantis, T. Health-related quality of life in patients with ankylosing spondylitis: a comprehensive review. Expert Rev. Pharmacoecon. Outcomes Res. 14, 857–872 (2014).

    Article  PubMed  Google Scholar 

  162. Salaffi, F., Carotti, M., Gasparini, S., Intorcia, M. & Grassi, W. The health-related quality of life in rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis: a comparison with a selected sample of healthy people. Health Qual. Life Outcomes 7, 25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kiltz, U. & van der Heijde, D. Health-related quality of life in patients with rheumatoid arthritis and in patients with ankylosing spondylitis. Clin. Exp. Rheumatol. 27, S108–S111 (2009).

    CAS  PubMed  Google Scholar 

  164. Boonen, A. et al. Rapid and sustained improvement in health-related quality of life and utility for 72 weeks in patients with ankylosing spondylitis receiving etanercept. J. Rheumatol. 35, 662–667 (2008).

    CAS  PubMed  Google Scholar 

  165. van der Heijde, D. et al. The effect of golimumab therapy on disease activity and health-related quality of life in patients with ankylosing spondylitis: 2-year results of the GO-RAISE trial. J. Rheumatol. 41, 1095–1103 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Martindale, J. et al. Disease and psychological status in ankylosing spondylitis. Rheumatology 45, 1288–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Ward, M. M., Reveille, J. D., Learch, T. J., Davis, J. C. & Weisman, M. H. Impact of ankylosing spondylitis on work and family life: comparisons with the US population. Arthritis Rheum. 59, 497–503 (2008).

    Article  PubMed  Google Scholar 

  168. Ariza-Ariza, R., Hernández-Cruz, B. & Navarro-Sarabia, F. Physical function and health-related quality of life of Spanish patients with ankylosing spondylitis. Arthritis Rheum. 49, 483–487 (2003).

    Article  PubMed  Google Scholar 

  169. Ware, J. E. & Sherbourne, C. D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 30, 473–483 (1992).

    Article  PubMed  Google Scholar 

  170. Doward, L. C. et al. Development of the ASQoL: a quality of life instrument specific to ankylosing spondylitis. Ann. Rheum. Dis. 62, 20–26 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Khanna, D. & Tsevat, J. Health-related quality of life—an introduction. Am. J. Manag. Care 13, S218–S223 (2007).

    PubMed  Google Scholar 

  172. van Echteld, I. et al. Identification of the most common problems by patients with ankylosing spondylitis using the international classification of functioning, disability and health. J. Rheumatol. 33, 2475–2483 (2006).

    PubMed  Google Scholar 

  173. Boonen, A. et al. ASAS/WHO ICF Core Sets for ankylosing spondylitis (AS): how to classify the impact of AS on functioning and health. Ann. Rheum. Dis. 69, 102–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Kiltz, U. et al. Development of a health index in patients with ankylosing spondylitis (ASAS HI): final result of a global initiative based on the ICF guided by ASAS. Ann. Rheum. Dis. 74, 830–835 (2015). The development of a health index in axial spondyloarthritis is a major step forward in the assessment of the burden of disease in these patients.

    Article  CAS  PubMed  Google Scholar 

  175. Gossec, L. et al. A patient-derived and patient-reported outcome measure for assessing psoriatic arthritis: elaboration and preliminary validation of the Psoriatic Arthritis Impact of Disease (PsAID) questionnaire, a 13-country EULAR initiative. Ann. Rheum. Dis. 73, 1012–1019 (2014).

    Article  PubMed  Google Scholar 

  176. Brandt, J. et al. Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor α monoclonal antibody infliximab. Arthritis Rheum. 43, 1346–1352 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Helmick, C. G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 58, 15–25 (2008).

    Article  PubMed  Google Scholar 

  178. Reveille, J. D., Hirsch, R., Dillon, C. F., Carroll, M. D. & Weisman, M. H. The prevalence of HLA-B27 in the US: data from the US National Health and Nutrition Examination Survey, 2009. Arthritis Rheum. 64, 1407–1411 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  179. van der Linden, S. M., Valkenburg, H. A., de Jongh, B. M. & Cats, A. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum. 27, 241–249 (1984).

    Article  CAS  PubMed  Google Scholar 

  180. Akkoc, N. & Khan, M. A. Overestimation of the prevalence of ankylosing spondylitis in the Berlin study: comment on the article by Braun et al. Arthritis Rheum. 52, 4048–4049; author reply 4049–4050 (2005).

    Article  PubMed  Google Scholar 

  181. Gran, J. T., Husby, G. & Hordvik, M. Prevalence of ankylosing spondylitis in males and females in a young middle-aged population of Tromsø, northern Norway. Ann. Rheum. Dis. 44, 359–367 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gofton, J. P., Robinson, H. S. & Trueman, G. E. Ankylosing spondylitis in a Canadian Indian population. Ann. Rheum. Dis. 25, 525–527 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank U. Kiltz and X. Baraliakos for their support in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.S.); Epidemiology (M.D.); Mechanisms/pathophysiology (D.B.); Diagnosis, screening and prevention (J.S.); Management (J.B.); Quality of life (J.B.); Outlook (J.S.); overview of Primer (J.S.).

Corresponding author

Correspondence to Joachim Sieper.

Ethics declarations

Competing interests

J.S. has received honoraria for being a member of speaker's bureau and/or consulting fees from the following companies: AbbVie Boehringer Ingelheim Janssen Lilly Merck Novartis Pfizer and UCB; and research grants from the following companies: AbbVie Janssen Merck and Pfizer. J.B. discloses no financial conflicts. M.D. has received honouraria for being a member of speaker's bureau and/or consulting fees from the following companies: AbbVie Boehringer Ingelheim Janssen Lilly Merck Novartis Pfizer and UCB; and his department has received research grants from the following companies: AbbVie Janssen Lilly Merck Pfizer Novartis and UCB. D.B. has received honouraria for being a member of speakers bureau and/or consulting fees from the following companies: AbbVie Pfizer MSD UCB Novartis Lilly Boehringer Ingelheim Roche Bristol–Myers Squibb Janssen Glenmark Zymetech and FivePrime.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sieper, J., Braun, J., Dougados, M. et al. Axial spondyloarthritis. Nat Rev Dis Primers 1, 15013 (2015). https://doi.org/10.1038/nrdp.2015.13

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2015.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing